These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 33052615)
1. Drivers of distributions and niches of North American cold-adapted amphibians: evaluating both climate and land use. Seaborn T; Goldberg CS; Crespi EJ Ecol Appl; 2021 Mar; 31(2):e2236. PubMed ID: 33052615 [TBL] [Abstract][Full Text] [Related]
2. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges? Searcy CA; Shaffer HB Am Nat; 2016 Apr; 187(4):423-35. PubMed ID: 27028071 [TBL] [Abstract][Full Text] [Related]
3. Disentangling the effects of multiple environmental drivers on population changes within communities. Bowler DE; Heldbjerg H; Fox AD; O'Hara RB; Böhning-Gaese K J Anim Ecol; 2018 Jul; 87(4):1034-1045. PubMed ID: 29577274 [TBL] [Abstract][Full Text] [Related]
4. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
5. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115 [TBL] [Abstract][Full Text] [Related]
6. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. González C; Wang O; Strutz SE; González-Salazar C; Sánchez-Cordero V; Sarkar S PLoS Negl Trop Dis; 2010 Jan; 4(1):e585. PubMed ID: 20098495 [TBL] [Abstract][Full Text] [Related]
7. A test of the central-marginal hypothesis using population genetics and ecological niche modelling in an endemic salamander (Ambystoma barbouri). Micheletti SJ; Storfer A Mol Ecol; 2015 Mar; 24(5):967-79. PubMed ID: 25604892 [TBL] [Abstract][Full Text] [Related]
8. The importance (or lack thereof) of niche divergence to the maintenance of a northern species complex: the case of the long-toed salamander (Ambystoma macrodactylum Baird). Lee-Yaw JA; Irwin DE J Evol Biol; 2015 Apr; 28(4):917-30. PubMed ID: 25777044 [TBL] [Abstract][Full Text] [Related]
9. Amphibian occurrence is influenced by current and historic landscape characteristics. Piha H; Luoto M; Merilä J Ecol Appl; 2007 Dec; 17(8):2298-309. PubMed ID: 18213970 [TBL] [Abstract][Full Text] [Related]
10. Effects of climate and human activity on the current distribution of amphibians in China. Mi C; Huettmann F; Li X; Jiang Z; Du W; Sun B Conserv Biol; 2022 Dec; 36(6):e13964. PubMed ID: 35674098 [TBL] [Abstract][Full Text] [Related]
11. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
12. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
13. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. McCauley SJ; Davis CJ; Werner EE; Robeson MS J Anim Ecol; 2014 Jul; 83(4):858-65. PubMed ID: 24237364 [TBL] [Abstract][Full Text] [Related]
14. Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Miller DAW; Grant EHC; Muths E; Amburgey SM; Adams MJ; Joseph MB; Waddle JH; Johnson PTJ; Ryan ME; Schmidt BR; Calhoun DL; Davis CL; Fisher RN; Green DM; Hossack BR; Rittenhouse TAG; Walls SC; Bailey LL; Cruickshank SS; Fellers GM; Gorman TA; Haas CA; Hughson W; Pilliod DS; Price SJ; Ray AM; Sadinski W; Saenz D; Barichivich WJ; Brand A; Brehme CS; Dagit R; Delaney KS; Glorioso BM; Kats LB; Kleeman PM; Pearl CA; Rochester CJ; Riley SPD; Roth M; Sigafus BH Nat Commun; 2018 Sep; 9(1):3926. PubMed ID: 30254220 [TBL] [Abstract][Full Text] [Related]
15. Niche divergence of evolutionarily significant units with implications for repopulation programs of the world's largest amphibians. Zhao T; Zhang W; Zhou J; Zhao C; Liu X; Liu Z; Shu G; Wang S; Li C; Xie F; Chen Y; Jiang J Sci Total Environ; 2020 Oct; 738():140269. PubMed ID: 32806366 [TBL] [Abstract][Full Text] [Related]
16. How complex should models be? Comparing correlative and mechanistic range dynamics models. Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817 [TBL] [Abstract][Full Text] [Related]
17. Constraints to species' elevational range shifts as climate changes. Forero-Medina G; Joppa L; Pimm SL Conserv Biol; 2011 Feb; 25(1):163-71. PubMed ID: 21198846 [TBL] [Abstract][Full Text] [Related]
18. A life-history spectrum of population responses to simultaneous change in climate and land use. Buderman FE; Devries JH; Koons DN J Anim Ecol; 2023 Jun; 92(6):1267-1284. PubMed ID: 36995500 [TBL] [Abstract][Full Text] [Related]
19. Environmental Variables Influencing Five Speyeria (Lepidoptera: Nymphalidae) Species' Potential Distributions of Suitable Habitat in the Eastern United States. Geest EA; Baum KA Environ Entomol; 2021 Jun; 50(3):633-648. PubMed ID: 33561201 [TBL] [Abstract][Full Text] [Related]
20. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction. Yalcin S; Leroux SJ Glob Chang Biol; 2018 Aug; 24(8):3849-3861. PubMed ID: 29656456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]