BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33052665)

  • 1. Resolving Modifications on Sphingoid Base and
    Zhao X; Wu G; Zhang W; Dong M; Xia Y
    Anal Chem; 2020 Nov; 92(21):14775-14782. PubMed ID: 33052665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation.
    Lin Q; Li P; Jian R; Xia Y
    J Am Soc Mass Spectrom; 2022 Apr; 33(4):714-721. PubMed ID: 35195000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Fatty Acyl Modifications in Phosphatidylcholines and Lysophosphatidylcholines via Radical-Directed Dissociation.
    Zhao X; Xia Y
    J Am Soc Mass Spectrom; 2021 Feb; 32(2):560-568. PubMed ID: 33444004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry.
    Zhao J; Qiao L; Xia Y
    J Am Soc Mass Spectrom; 2023 Oct; 34(10):2394-2402. PubMed ID: 37735971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry.
    Ma X; Zhang W; Li Z; Xia Y; Ouyang Z
    Acc Chem Res; 2021 Oct; 54(20):3873-3882. PubMed ID: 34570464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling of Cholesteryl Esters by Coupling Charge-Tagging Paternò-Büchi Reaction and Liquid Chromatography-Mass Spectrometry.
    Xie X; Zhao J; Lin M; Zhang JL; Xia Y
    Anal Chem; 2020 Jun; 92(12):8487-8496. PubMed ID: 32412732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lipidomic workflow capable of resolving
    Zhao X; Zhang W; Zhang D; Liu X; Cao W; Chen Q; Ouyang Z; Xia Y
    Chem Sci; 2019 Dec; 10(46):10740-10748. PubMed ID: 32153749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry.
    Sullards MC
    Methods Enzymol; 2000; 312():32-45. PubMed ID: 11070861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the distribution of double bond location isomers in lipids across mouse tissues.
    Ren H; Triebl A; Muralidharan S; Wenk MR; Xia Y; Torta F
    Analyst; 2021 Jun; 146(12):3899-3907. PubMed ID: 34009216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Phospholipid Isomer Analysis by Online Photochemical Derivatization and RPLC-MS.
    Zhang W; Shang B; Ouyang Z; Xia Y
    Anal Chem; 2020 May; 92(9):6719-6726. PubMed ID: 32271544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling Paternò-Büchi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for In Vivo and Microscale Profiling of Lipid C═C Location Isomers in Complex Biological Tissues.
    Deng J; Yang Y; Liu Y; Fang L; Lin L; Luan T
    Anal Chem; 2019 Apr; 91(7):4592-4599. PubMed ID: 30832475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS.
    Blaas N; Schüürmann C; Bartke N; Stahl B; Humpf HU
    J Agric Food Chem; 2011 Jun; 59(11):6018-24. PubMed ID: 21534545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions.
    Levery SB; Toledo MS; Doong RL; Straus AH; Takahashi HK
    Rapid Commun Mass Spectrom; 2000; 14(7):551-63. PubMed ID: 10775088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry.
    Pham HT; Ly T; Trevitt AJ; Mitchell TW; Blanksby SJ
    Anal Chem; 2012 Sep; 84(17):7525-32. PubMed ID: 22881372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of branched-chain fatty acids
    Jian R; Zhao X; Lin Q; Xia Y
    Analyst; 2022 May; 147(10):2115-2123. PubMed ID: 35471208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural elucidation of triacylglycerol using online acetone Paternò-Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry.
    Franklin ET; Xia Y
    Analyst; 2020 Oct; 145(20):6532-6540. PubMed ID: 32761025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry.
    Thomas MC; Mitchell TW; Harman DG; Deeley JM; Murphy RC; Blanksby SJ
    Anal Chem; 2007 Jul; 79(13):5013-22. PubMed ID: 17547368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and Qualitative Method for Sphingomyelin by LC-MS Using Two Stable Isotopically Labeled Sphingomyelin Species.
    Hama K; Fujiwara Y; Yokoyama K
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry.
    Ren J; Franklin ET; Xia Y
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1432-1441. PubMed ID: 28417305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans.
    Luo H; Zhao X; Wang ZD; Wu G; Xia Y; Dong MQ; Ma Y
    J Lipid Res; 2024 May; 65(6):100553. PubMed ID: 38704027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.