These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33052847)

  • 1. Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network.
    Wu L; Zhang X; Wang K; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2637-2646. PubMed ID: 33052847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Calibration of Electrode Array Shifts Enables Robust Myoelectric Control.
    Zhang X; Wu L; Yu B; Chen X; Chen X
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1947-1957. PubMed ID: 31715562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks.
    Wu L; Chen X; Chen X; Zhang X
    Front Neurorobot; 2022; 16():862193. PubMed ID: 35418847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualized Evidences for Detecting Novelty in Myoelectric Pattern Recognition using 3D Convolutional Neural Networks
    Wu L; Zhang X; Chen X; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2641-2644. PubMed ID: 31946438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position Identification for Robust Myoelectric Control Against Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3121-3128. PubMed ID: 33196444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition.
    Xu M; Chen X; Sun A; Zhang X; Chen X
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2604-2615. PubMed ID: 37030849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting the universal adversarial perturbations on high-density sEMG signals.
    Xue B; Wu L; Liu A; Zhang X; Chen X; Chen X
    Comput Biol Med; 2022 Oct; 149():105978. PubMed ID: 36037630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding finger movement patterns from microscopic neural drive information based on deep learning.
    Zhao Y; Zhang X; Li X; Zhao H; Chen X; Chen X; Gao X
    Med Eng Phys; 2022 Jun; 104():103797. PubMed ID: 35641068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
    Lv B; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5652-5655. PubMed ID: 30441618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Electrode Calibration Method Based on Muscle Core Activation Regions and Its Application in Myoelectric Pattern Recognition.
    Hu R; Chen X; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():11-20. PubMed ID: 33021932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4324-7. PubMed ID: 23366884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards robust HD EMG pattern recognition: reducing electrode displacement effect using structural similarity.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4547-50. PubMed ID: 25571003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):370-379. PubMed ID: 31880557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle-Computer Interface.
    Fan J; Wen J; Lai Z
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Silent Speech Based on High-Density Surface Electromyogram Using Spatiotemporal Neural Network.
    Chen X; Zhang X; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2069-2078. PubMed ID: 37040243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Wearable HD-EMG Sensor With Shift-Robust Gesture Recognition Using Deep Learning.
    Chamberland F; Buteau E; Tam S; Campbell E; Mortazavi A; Scheme E; Fortier P; Boukadoum M; Campeau-Lecours A; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):968-984. PubMed ID: 37695958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.