These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33052931)
1. Development of a specimen-specific in vitro pre-clinical simulation model of the human cadaveric knee with appropriate soft tissue constraints. Liu A; Sanderson WJ; Ingham E; Fisher J; Jennings LM PLoS One; 2020; 15(10):e0238785. PubMed ID: 33052931 [TBL] [Abstract][Full Text] [Related]
2. Development of a pre-clinical experimental simulation model of the natural porcine knee with appropriate ligamentous constraints. Liu A; Ingham E; Fisher J; Jennings LM PLoS One; 2019; 14(5):e0216872. PubMed ID: 31086417 [TBL] [Abstract][Full Text] [Related]
3. Validation of the soft tissue restraints in a force-controlled knee simulator. van Houtem M; Clough R; Khan A; Harrison M; Blunn GW Proc Inst Mech Eng H; 2006 Apr; 220(3):449-56. PubMed ID: 16808077 [TBL] [Abstract][Full Text] [Related]
4. An in vitro analysis of medial structures and a medial soft tissue reconstruction in a constrained condylar total knee arthroplasty. Athwal KK; El Daou H; Inderhaug E; Manning W; Davies AJ; Deehan DJ; Amis AA Knee Surg Sports Traumatol Arthrosc; 2017 Aug; 25(8):2646-2655. PubMed ID: 27026029 [TBL] [Abstract][Full Text] [Related]
5. Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study. Lording T; Corbo G; Bryant D; Burkhart TA; Getgood A Clin Orthop Relat Res; 2017 Oct; 475(10):2401-2408. PubMed ID: 28536855 [TBL] [Abstract][Full Text] [Related]
6. The Effect of an ACL Reconstruction in Controlling Rotational Knee Stability in Knees with Intact and Physiologic Laxity of Secondary Restraints as Defined by Tibiofemoral Compartment Translations and Graft Forces. Noyes FR; Huser LE; Levy MS J Bone Joint Surg Am; 2018 Apr; 100(7):586-597. PubMed ID: 29613928 [TBL] [Abstract][Full Text] [Related]
7. Male-Female Differences in Knee Laxity and Stiffness: A Cadaveric Study. Boguszewski DV; Cheung EC; Joshi NB; Markolf KL; McAllister DR Am J Sports Med; 2015 Dec; 43(12):2982-7. PubMed ID: 26464493 [TBL] [Abstract][Full Text] [Related]
8. Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study. Kent RN; Amirtharaj MJ; Hardy BM; Pearle AD; Wickiewicz TL; Imhauser CW J Biomech; 2018 Jun; 74():9-15. PubMed ID: 29752053 [TBL] [Abstract][Full Text] [Related]
9. The Effects of Anterolateral Tenodesis on Tibiofemoral Contact Pressures and Kinematics. Inderhaug E; Stephen JM; El-Daou H; Williams A; Amis AA Am J Sports Med; 2017 Nov; 45(13):3081-3088. PubMed ID: 28763623 [TBL] [Abstract][Full Text] [Related]
10. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
11. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. Markolf KL; Jackson SR; Foster B; McAllister DR J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893 [TBL] [Abstract][Full Text] [Related]
12. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Am J Sports Med; 2016 Jul; 44(7):1762-70. PubMed ID: 27159295 [TBL] [Abstract][Full Text] [Related]
15. Implant preloading in extension reduces spring length change in dynamic intraligamentary stabilization: a biomechanical study on passive kinematics of the knee. Häberli J; Voumard B; Kösters C; Delfosse D; Henle P; Eggli S; Zysset P Knee Surg Sports Traumatol Arthrosc; 2018 Dec; 26(12):3582-3592. PubMed ID: 29858655 [TBL] [Abstract][Full Text] [Related]
16. Rotational and varus-valgus laxity affects kinematics of the normal knee: A cadaveric study. Wada K; Hamada D; Takasago T; Goto T; Tonogai I; Tsuruo Y; Sairyo K J Orthop Surg (Hong Kong); 2019; 27(3):2309499019873726. PubMed ID: 31533546 [TBL] [Abstract][Full Text] [Related]
17. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296 [TBL] [Abstract][Full Text] [Related]
18. Bicruciate lesion biomechanics, Part 1-Diagnosis: translations over 15 mm at 90° of knee flexion are indicative of a complete tear. de Carvalho RT; Franciozi CE; Itami Y; McGarry MH; Ingham SJM; Abdalla RJ; Tibone JE; Lee TQ Knee Surg Sports Traumatol Arthrosc; 2019 Sep; 27(9):2927-2935. PubMed ID: 29947839 [TBL] [Abstract][Full Text] [Related]
19. Posteromedial Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity With Anterior Cruciate Ligament Deficiency, and Their Repair Reduces Laxity. Stephen JM; Halewood C; Kittl C; Bollen SR; Williams A; Amis AA Am J Sports Med; 2016 Feb; 44(2):400-8. PubMed ID: 26657852 [TBL] [Abstract][Full Text] [Related]
20. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator. Liu A; Jennings LM; Ingham E; Fisher J J Biomech; 2015 Sep; 48(12):3004-11. PubMed ID: 26300400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]