These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33052964)

  • 1. How much off-the-shelf knowledge is transferable from natural images to pathology images?
    Li X; Plataniotis KN
    PLoS One; 2020; 15(10):e0240530. PubMed ID: 33052964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep computational pathology in breast cancer.
    Duggento A; Conti A; Mauriello A; Guerrisi M; Toschi N
    Semin Cancer Biol; 2021 Jul; 72():226-237. PubMed ID: 32818626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying concepts from medical images via transfer learning and image retrieval.
    Wang XW; Zhang Y; Guo Z; Li J
    Math Biosci Eng; 2019 Mar; 16(4):1978-1991. PubMed ID: 31137196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.
    Salvi M; Acharya UR; Molinari F; Meiburger KM
    Comput Biol Med; 2021 Jan; 128():104129. PubMed ID: 33254082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
    Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V
    Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for identifying radiogenomic associations in breast cancer.
    Zhu Z; Albadawy E; Saha A; Zhang J; Harowicz MR; Mazurowski MA
    Comput Biol Med; 2019 Jun; 109():85-90. PubMed ID: 31048129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast cancer pathological image classification based on deep learning.
    Hou Y
    J Xray Sci Technol; 2020; 28(4):727-738. PubMed ID: 32390646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning.
    Huang C; Lv W; Zhou C; Mao L; Xu Q; Li X; Qi L; Xia F; Li X; Zhang Q; Zhang L; Lu G
    Eur Radiol; 2020 Dec; 30(12):6913-6923. PubMed ID: 32696253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathology Image Analysis Using Segmentation Deep Learning Algorithms.
    Wang S; Yang DM; Rong R; Zhan X; Xiao G
    Am J Pathol; 2019 Sep; 189(9):1686-1698. PubMed ID: 31199919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of HE-stained histological images using cycle consistent generative adversarial networks.
    Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA
    Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures.
    Cao Z; Duan L; Yang G; Yue T; Chen Q
    BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer.
    Ding K; Zhou M; Wang H; Gevaert O; Metaxas D; Zhang S
    Sci Data; 2023 Apr; 10(1):231. PubMed ID: 37085533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse coding of pathology slides compared to transfer learning with deep neural networks.
    Fischer W; Moudgalya SS; Cohn JD; Nguyen NTT; Kenyon GT
    BMC Bioinformatics; 2018 Dec; 19(Suppl 18):489. PubMed ID: 30577746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.