These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33053515)

  • 1. Deep learning-based inverse mapping for fluence map prediction.
    Ma L; Chen M; Gu X; Lu W
    Phys Med Biol; 2020 Nov; 65(23):. PubMed ID: 33053515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy.
    Park SY; Kim IH; Ye SJ; Carlson J; Park JM
    Med Phys; 2014 Nov; 41(11):111718. PubMed ID: 25370632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerate treatment planning process using deep learning generated fluence maps for cervical cancer radiation therapy.
    Yuan Z; Wang Y; Hu P; Zhang D; Yan B; Lu HM; Zhang H; Yang Y
    Med Phys; 2022 Apr; 49(4):2631-2641. PubMed ID: 35157337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast optimization approach for treatment planning of volumetric modulated arc therapy.
    Yan H; Dai JR; Li YX
    Radiat Oncol; 2018 May; 13(1):101. PubMed ID: 29848368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive formulation for volumetric modulated arc therapy planning.
    Nguyen D; Lyu Q; Ruan D; O'Connor D; Low DA; Sheng K
    Med Phys; 2016 Jul; 43(7):4263. PubMed ID: 27370141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT.
    Rao M; Cao D; Chen F; Ye J; Mehta V; Wong T; Shepard D
    Phys Med Biol; 2010 Nov; 55(21):6475-90. PubMed ID: 20959688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error detection model developed using a multi-task convolutional neural network in patient-specific quality assurance for volumetric-modulated arc therapy.
    Kimura Y; Kadoya N; Oku Y; Kajikawa T; Tomori S; Jingu K
    Med Phys; 2021 Sep; 48(9):4769-4783. PubMed ID: 34101848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights of an AI agent via analysis of prediction errors: a case study of fluence map prediction for radiation therapy planning.
    Li X; Wu QJ; Wu Q; Wang C; Sheng Y; Wang W; Stephens H; Yin FF; Ge Y
    Phys Med Biol; 2021 Nov; 66(23):. PubMed ID: 34757945
    [No Abstract]   [Full Text] [Related]  

  • 10. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).
    Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y
    Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.
    Bohara G; Sadeghnejad Barkousaraie A; Jiang S; Nguyen D
    Med Phys; 2020 Sep; 47(9):3898-3912. PubMed ID: 32621789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual pretreatment patient-specific quality assurance of volumetric modulated arc therapy using deep learning.
    Yoganathan SA; Ahmed S; Paloor S; Torfeh T; Aouadi S; Al-Hammadi N; Hammoud R
    Med Phys; 2023 Dec; 50(12):7891-7903. PubMed ID: 37379068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous aperture dose calculation and optimization for volumetric modulated arc therapy.
    Christiansen E; Heath E; Xu T
    Phys Med Biol; 2018 Oct; 63(21):21NT01. PubMed ID: 30362464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicriteria optimization for volumetric-modulated arc therapy by decomposition into a fluence-based relaxation and a segment weight-based restriction.
    Bokrantz R
    Med Phys; 2012 Nov; 39(11):6712-25. PubMed ID: 23127065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans.
    Bazalova-Carter M; Qu B; Palma B; HÃ¥rdemark B; Hynning E; Jensen C; Maxim PG; Loo BW
    Med Phys; 2015 May; 42(5):2615-25. PubMed ID: 25979053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic dose prediction using deep learning and plan optimization with finite-element control for intensity modulated radiation therapy.
    Shen Y; Tang X; Lin S; Jin X; Ding J; Shao M
    Med Phys; 2024 Jan; 51(1):545-555. PubMed ID: 37748133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic direct aperture optimization using multiphase piecewise constant segmentation.
    Nguyen D; O'Connor D; Ruan D; Sheng K
    Med Phys; 2017 Nov; 44(11):5596-5609. PubMed ID: 28834556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Input feature design and its impact on the performance of deep learning models for predicting fluence maps in intensity-modulated radiation therapy.
    Li X; Ge Y; Wu Q; Wang C; Sheng Y; Wang W; Stephens H; Yin FF; Wu QJ
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36206747
    [No Abstract]   [Full Text] [Related]  

  • 19. A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction.
    Sun Z; Xia X; Fan J; Zhao J; Zhang K; Wang J; Hu W
    Med Phys; 2022 Mar; 49(3):1344-1356. PubMed ID: 35043971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo dose verification method for SBRT-VMAT delivery using the EPID.
    McCowan PM; Van Uytven E; Van Beek T; Asuni G; McCurdy BM
    Med Phys; 2015 Dec; 42(12):6955-63. PubMed ID: 26632051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.