BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 33053604)

  • 1. Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know?
    Dolly A; Dumas JF; Servais S
    J Cachexia Sarcopenia Muscle; 2020 Dec; 11(6):1413-1428. PubMed ID: 33053604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice.
    Brown JL; Rosa-Caldwell ME; Lee DE; Blackwell TA; Brown LA; Perry RA; Haynie WS; Hardee JP; Carson JA; Wiggs MP; Washington TA; Greene NP
    J Cachexia Sarcopenia Muscle; 2017 Dec; 8(6):926-938. PubMed ID: 28845591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse.
    Aulino P; Berardi E; Cardillo VM; Rizzuto E; Perniconi B; Ramina C; Padula F; Spugnini EP; Baldi A; Faiola F; Adamo S; Coletti D
    BMC Cancer; 2010 Jul; 10():363. PubMed ID: 20615237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness.
    Neyroud D; Nosacka RL; Callaway CS; Trevino JG; Hu H; Judge SM; Judge AR
    J Cachexia Sarcopenia Muscle; 2021 Apr; 12(2):421-442. PubMed ID: 33527776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pectoralis major muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer.
    Dolly A; Lecomte T; Tabchouri N; Caulet M; Michot N; Anon B; Chautard R; Desvignes Y; Ouaissi M; Fromont-Hankard G; Dumas JF; Servais S
    J Cachexia Sarcopenia Muscle; 2022 Jun; 13(3):1837-1849. PubMed ID: 35316572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release.
    Zhou L; Zhang T; Shao W; Lu R; Wang L; Liu H; Jiang B; Li S; Zhuo H; Wang S; Li Q; Huang C; Lin D
    Skelet Muscle; 2021 Jul; 11(1):17. PubMed ID: 34229732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies.
    Martin A; Freyssenet D
    J Cachexia Sarcopenia Muscle; 2021 Apr; 12(2):252-273. PubMed ID: 33783983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alantolactone ameliorates cancer cachexia-associated muscle atrophy mainly by inhibiting the STAT3 signaling pathway.
    Shen Q; Kuang JX; Miao CX; Zhang WL; Li YW; Zhang XW; Liu X
    Phytomedicine; 2022 Jan; 95():153858. PubMed ID: 34861585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of metabolic and contractile alterations in development of cancer cachexia in female tumor-bearing mice.
    Lim S; Deaver JW; Rosa-Caldwell ME; Haynie WS; Morena da Silva F; Cabrera AR; Schrems ER; Saling LW; Jansen LT; Dunlap KR; Wiggs MP; Washington TA; Greene NP
    J Appl Physiol (1985); 2022 Jan; 132(1):58-72. PubMed ID: 34762526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy.
    Mina E; Wyart E; Sartori R; Angelino E; Zaggia I; Rausch V; Maldotti M; Pagani A; Hsu MY; Friziero A; Sperti C; Menga A; Graziani A; Hirsch E; Oliviero S; Sandri M; Conti L; Kautz L; Silvestri L; Porporato PE
    Cell Rep Med; 2023 Dec; 4(12):101306. PubMed ID: 38052214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management.
    Siff T; Parajuli P; Razzaque MS; Atfi A
    Trends Endocrinol Metab; 2021 Jun; 32(6):382-402. PubMed ID: 33888422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle omics signatures in cancer cachexia: perspectives and opportunities.
    Gilmore LA; Parry TL; Thomas GA; Khamoui AV
    J Natl Cancer Inst Monogr; 2023 May; 2023(61):30-42. PubMed ID: 37139970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia.
    Bilgic SN; Domaniku A; Toledo B; Agca S; Weber BZC; Arabaci DH; Ozornek Z; Lause P; Thissen JP; Loumaye A; Kir S
    Nature; 2023 May; 617(7962):827-834. PubMed ID: 37165186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of hachimijiogan (HJG), a Japanese Kampo medicine, on cancer cachectic muscle wasting in mice.
    Kametaka S; Isobe M; Komata K; Morinaga M; Nagahata K; Lee-Hotta S; Uchiyama Y; Shibata M; Sugiura H
    Biomed Res; 2023; 44(5):199-207. PubMed ID: 37779032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination therapy with anamorelin and a myostatin inhibitor is advantageous for cancer cachexia in a mouse model.
    Hanada K; Fukasawa K; Hinata H; Imai S; Takayama K; Hirai H; Ohfusa R; Hayashi Y; Itoh F
    Cancer Sci; 2022 Oct; 113(10):3547-3557. PubMed ID: 35849084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinted functional skeletal muscle models have potential applications for studies of muscle wasting in cancer cachexia.
    García-Lizarribar A; Villasante A; Lopez-Martin JA; Flandez M; Soler-Vázquez MC; Serra D; Herrero L; Sagrera A; Efeyan A; Samitier J
    Biomater Adv; 2023 Jul; 150():213426. PubMed ID: 37104961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Natural Products in the Improvement of Cancer-Associated Cachexia.
    Han Y; Kim HI; Park J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exosomes in the pathogenesis and treatment of cancer-related cachexia.
    Ru Q; Chen L; Xu G; Wu Y
    J Transl Med; 2024 Apr; 22(1):408. PubMed ID: 38689293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer-induced muscle atrophy is determined by intrinsic muscle oxidative capacity.
    Alves CRR; Eichelberger EJ; das Neves W; Ribeiro MAC; Bechara LRG; Voltarelli VA; de Almeida NR; Hagen L; Sharma A; Ferreira JCB; Swoboda KJ; Slupphaug G; Brum PC
    FASEB J; 2021 Jul; 35(7):e21714. PubMed ID: 34118107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.