These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 33053653)
21. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Kono Y; Nishimura M Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445752 [TBL] [Abstract][Full Text] [Related]
22. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean. Yin X; Nishimura M; Hajika M; Komatsu S J Proteome Res; 2016 Jun; 15(6):2008-25. PubMed ID: 27132649 [TBL] [Abstract][Full Text] [Related]
23. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807 [TBL] [Abstract][Full Text] [Related]
24. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Yin X; Hiraga S; Hajika M; Nishimura M; Komatsu S Plant Mol Biol; 2017 Mar; 93(4-5):479-496. PubMed ID: 28012053 [TBL] [Abstract][Full Text] [Related]
25. Characterization of proteins in soybean roots under flooding and drought stresses. Oh M; Komatsu S J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361 [TBL] [Abstract][Full Text] [Related]
26. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. Nanjo Y; Skultety L; Ashraf Y; Komatsu S J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568 [TBL] [Abstract][Full Text] [Related]
27. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. Wang X; Oh M; Sakata K; Komatsu S J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099 [TBL] [Abstract][Full Text] [Related]
28. Organ-specific proteomics of soybean seedlings under flooding and drought stresses. Wang X; Khodadadi E; Fakheri B; Komatsu S J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105 [TBL] [Abstract][Full Text] [Related]
29. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. Wang X; Komatsu S J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589 [TBL] [Abstract][Full Text] [Related]
30. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database. Komatsu S; Wang X; Yin X; Nanjo Y; Ohyanagi H; Sakata K J Proteomics; 2017 Jun; 163():52-66. PubMed ID: 28499913 [TBL] [Abstract][Full Text] [Related]
31. Plant nuclear proteomics for unraveling physiological function. Yin X; Komatsu S N Biotechnol; 2016 Sep; 33(5 Pt B):644-654. PubMed ID: 27004615 [TBL] [Abstract][Full Text] [Related]
32. Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. Nanjo Y; Skultety L; Uváčková L; Klubicová K; Hajduch M; Komatsu S J Proteome Res; 2012 Jan; 11(1):372-85. PubMed ID: 22136409 [TBL] [Abstract][Full Text] [Related]
33. Integrative pathway and network analysis provide insights on flooding-tolerance genes in soybean. Jhan LH; Yang CY; Huang CM; Lai MC; Huang YH; Baiya S; Kao CF Sci Rep; 2023 Feb; 13(1):1980. PubMed ID: 36737640 [TBL] [Abstract][Full Text] [Related]
34. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean. Zhong Z; Kobayashi T; Zhu W; Imai H; Zhao R; Ohno T; Rehman SU; Uemura M; Tian J; Komatsu S J Proteomics; 2020 Jun; 221():103781. PubMed ID: 32294531 [TBL] [Abstract][Full Text] [Related]
35. Identification of QTN and Candidate Gene for Seed-flooding Tolerance in Soybean [ Yu Z; Chang F; Lv W; Sharmin RA; Wang Z; Kong J; Bhat JA; Zhao T Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31766569 [TBL] [Abstract][Full Text] [Related]
36. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Kamal AH; Komatsu S Mol Biol Rep; 2016 Feb; 43(2):73-89. PubMed ID: 26754663 [TBL] [Abstract][Full Text] [Related]
37. Identification of nuclear proteins in soybean under flooding stress using proteomic technique. Oh MW; Nanjo Y; Komatsu S Protein Pept Lett; 2014 May; 21(5):458-67. PubMed ID: 24237379 [TBL] [Abstract][Full Text] [Related]
38. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. Komatsu S; Kuji R; Nanjo Y; Hiraga S; Furukawa K J Proteomics; 2012 Dec; 77():531-60. PubMed ID: 23041469 [TBL] [Abstract][Full Text] [Related]
39. Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Nanjo Y; Maruyama K; Yasue H; Yamaguchi-Shinozaki K; Shinozaki K; Komatsu S Plant Mol Biol; 2011 Sep; 77(1-2):129-44. PubMed ID: 21656040 [TBL] [Abstract][Full Text] [Related]
40. Proteomic Analysis of Calcium Effects on Soybean Root Tip under Flooding and Drought Stresses. Wang X; Komatsu S Plant Cell Physiol; 2017 Aug; 58(8):1405-1420. PubMed ID: 28586431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]