These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33053662)
41. Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester. Lee K; Jeong Y; Lee CH; Lee J; Seo HS; Cho Y Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616739 [TBL] [Abstract][Full Text] [Related]
42. Wettability evaluation of hydrophilic-hydrophobic nanohybrid silica thin films using picoliter water droplets. Shimizu W; Hokka J; Enoki T; Kobayashi Y; Kato M; Murakami Y J Nanosci Nanotechnol; 2013 Apr; 13(4):2758-64. PubMed ID: 23763156 [TBL] [Abstract][Full Text] [Related]
43. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers. Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848 [TBL] [Abstract][Full Text] [Related]
44. Dynamic Interactions between a Silica Sphere and Deformable Interfaces in Organic Solvents Studied by Atomic Force Microscopy. Kuznicki NP; Harbottle D; Masliyah J; Xu Z Langmuir; 2016 Sep; 32(38):9797-806. PubMed ID: 27482923 [TBL] [Abstract][Full Text] [Related]
45. Mapping between Surface Wettability, Droplets, and Their Impacting Behaviors. Zhao C; Montazeri K; Shao B; Won Y Langmuir; 2021 Aug; 37(33):9964-9972. PubMed ID: 34378941 [TBL] [Abstract][Full Text] [Related]
46. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer. Inada N; Asakawa H; Kobayashi T; Fukuma T Beilstein J Nanotechnol; 2016; 7():409-17. PubMed ID: 27335733 [TBL] [Abstract][Full Text] [Related]
47. Characterization of droplet impact and deposit formation on leaf surfaces. Dong X; Zhu H; Yang X Pest Manag Sci; 2015 Feb; 71(2):302-8. PubMed ID: 24753323 [TBL] [Abstract][Full Text] [Related]
48. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions. Wang L; Zhu D Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668 [TBL] [Abstract][Full Text] [Related]
49. Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold. Khanzadeh Borjak S; Rafee R; Valipour MS Langmuir; 2020 Nov; 36(45):13498-13508. PubMed ID: 33146013 [TBL] [Abstract][Full Text] [Related]
50. Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process. Xia Z; Xiao Y; Yang Z; Li L; Wang S; Liu X; Tian Y Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30845671 [TBL] [Abstract][Full Text] [Related]
51. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications. Kim M; Lee SK; Yang YS; Jeong J; Min NK; Kwon KH J Nanosci Nanotechnol; 2013 Dec; 13(12):7932-7. PubMed ID: 24266167 [TBL] [Abstract][Full Text] [Related]
52. Droplet Impinging Behavior on Surfaces with Wettability Contrasts. Farshchian B; Pierce J; Beheshti MS; Park S; Kim N Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957 [TBL] [Abstract][Full Text] [Related]
53. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes. Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623 [TBL] [Abstract][Full Text] [Related]
54. From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Cheng Z; Du M; Lai H; Zhang N; Sun K Nanoscale; 2013 Apr; 5(7):2776-83. PubMed ID: 23429404 [TBL] [Abstract][Full Text] [Related]
55. Quantification of raindrop kinetic energy for improved prediction of splash-dispersed pathogens. Lovell DJ; Parker SR; Van Peteghem P; Webb DA; Welham SJ Phytopathology; 2002 May; 92(5):497-503. PubMed ID: 18943023 [TBL] [Abstract][Full Text] [Related]
56. Liquid droplet impact on a sonically excited thin membrane. Abubakar AA; Yilbas BS; Al-Qahtani H; Alzaydi A Soft Matter; 2022 Feb; 18(7):1443-1454. PubMed ID: 35080547 [TBL] [Abstract][Full Text] [Related]
57. Impacting Water Droplets Can Alleviate Dust from Slanted Hydrophobic Surfaces. Yilbas BS; Abubakar AA; Ali H; Al-Sharafi A; Sahin AZ; Sunar M; Al-Qahtani H Langmuir; 2021 Apr; 37(14):4355-4369. PubMed ID: 33789039 [TBL] [Abstract][Full Text] [Related]