BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33053750)

  • 41. Molecular modelling of Staphylococcal delta-toxin ion channels by restrained molecular dynamics.
    Kerr ID; Doak DG; Sankararamakrishnan R; Breed J; Sansom MS
    Protein Eng; 1996 Feb; 9(2):161-71. PubMed ID: 9005437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peptide toxins in sea anemones: structural and functional aspects.
    Honma T; Shiomi K
    Mar Biotechnol (NY); 2006; 8(1):1-10. PubMed ID: 16372161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudechetoxin binds to the pore turret of cyclic nucleotide-gated ion channels.
    Brown RL; Lynch LL; Haley TL; Arsanjani R
    J Gen Physiol; 2003 Dec; 122(6):749-60. PubMed ID: 14638933
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and function of voltage-gated ion channels.
    Terlau H; Stühmer W
    Naturwissenschaften; 1998 Sep; 85(9):437-44. PubMed ID: 9802045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pushing the Limits of Computational Structure-Based Drug Design with a Cryo-EM Structure: The Ca
    Kotev M; Pascual R; Almansa C; Guallar V; Soliva R
    J Chem Inf Model; 2018 Aug; 58(8):1707-1715. PubMed ID: 30053380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop.
    Bende NS; Dziemborowicz S; Herzig V; Ramanujam V; Brown GW; Bosmans F; Nicholson GM; King GF; Mobli M
    FEBS J; 2015 Mar; 282(5):904-20. PubMed ID: 25559770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational elucidation, mutational and hot spot-based designing of potential inhibitors against human acid-sensing ion channels (hASIC-1a) to treat various physiological conditions.
    Chauhan AS; Ansari MY; Mansuri R; Dikhit MR; Ali V; Sahoo GC; Das P
    J Biomol Struct Dyn; 2018 Oct; 36(13):3513-3530. PubMed ID: 29039242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing the mu-conotoxin binding site on voltage-sensitive sodium channels with toxin analogs and channel mutations.
    Chahine M; Chen LQ; Fotouhi N; Walsky R; Fry D; Santarelli V; Horn R; Kallen RG
    Recept Channels; 1995; 3(3):161-74. PubMed ID: 8821790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
    Cappel D; Sherman W; Beuming T
    Curr Top Med Chem; 2017; 17(23):2586-2598. PubMed ID: 28413953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications.
    Gordon D; Chen R; Chung SH
    Physiol Rev; 2013 Apr; 93(2):767-802. PubMed ID: 23589832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular Mechanisms and Structural Basis of Retigabine Analogues in Regulating KCNQ2 Channel.
    Shi S; Li J; Sun F; Chen Y; Pang C; Geng Y; Qi J; Guo S; Wang X; Zhang H; Zhan Y; An H
    J Membr Biol; 2020 Apr; 253(2):167-181. PubMed ID: 32170353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics.
    Gianti E; Carnevale V
    Methods Enzymol; 2018; 602():25-59. PubMed ID: 29588033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
    Roux B; Prod'hom B; Karplus M
    Biophys J; 1995 Mar; 68(3):876-92. PubMed ID: 7538804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voltage-gated ion channels and gating modifier toxins.
    Catterall WA; Cestèle S; Yarov-Yarovoy V; Yu FH; Konoki K; Scheuer T
    Toxicon; 2007 Feb; 49(2):124-41. PubMed ID: 17239913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
    Campos FV; Chanda B; Beirão PS; Bezanilla F
    J Gen Physiol; 2007 Sep; 130(3):257-68. PubMed ID: 17698594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aggregation and porin-like channel activity of a beta sheet peptide.
    Thundimadathil J; Roeske RW; Jiang HY; Guo L
    Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.
    Eriksson MA; Roux B
    Biophys J; 2002 Nov; 83(5):2595-609. PubMed ID: 12414693
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From toxins targeting ligand gated ion channels to therapeutic molecules.
    Nasiripourdori A; Taly V; Grutter T; Taly A
    Toxins (Basel); 2011 Mar; 3(3):260-93. PubMed ID: 22069709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding.
    Scheib H; McLay I; Guex N; Clare JJ; Blaney FE; Dale TJ; Tate SN; Robertson GM
    J Mol Model; 2006 Sep; 12(6):813-22. PubMed ID: 16508760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.