These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33053822)

  • 1. Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β
    Hasan A; Mohammadi N; Nawaz A; Kodagoda T; Diakonov I; Harding SE; Gorelik J
    Cells; 2020 Oct; 9(10):. PubMed ID: 33053822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases.
    Leroy J; Abi-Gerges A; Nikolaev VO; Richter W; Lechêne P; Mazet JL; Conti M; Fischmeister R; Vandecasteele G
    Circ Res; 2008 May; 102(9):1091-100. PubMed ID: 18369156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy.
    Wu H; Lee J; Vincent LG; Wang Q; Gu M; Lan F; Churko JM; Sallam KI; Matsa E; Sharma A; Gold JD; Engler AJ; Xiang YK; Bers DM; Wu JC
    Cell Stem Cell; 2015 Jul; 17(1):89-100. PubMed ID: 26095046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2015 Nov; 88():29-38. PubMed ID: 26388264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling.
    Wright PT; Nikolaev VO; O'Hara T; Diakonov I; Bhargava A; Tokar S; Schobesberger S; Shevchuk AI; Sikkel MB; Wilkinson R; Trayanova NA; Lyon AR; Harding SE; Gorelik J
    J Mol Cell Cardiol; 2014 Feb; 67():38-48. PubMed ID: 24345421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes.
    Isidori AM; Cornacchione M; Barbagallo F; Di Grazia A; Barrios F; Fassina L; Monaco L; Giannetta E; Gianfrilli D; Garofalo S; Zhang X; Chen X; Xiang YK; Lenzi A; Pellegrini M; Naro F
    Cardiovasc Res; 2015 Jun; 106(3):408-20. PubMed ID: 25852085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes.
    Shi Q; Li M; Mika D; Fu Q; Kim S; Phan J; Shen A; Vandecasteele G; Xiang YK
    Cardiovasc Res; 2017 May; 113(6):656-670. PubMed ID: 28339772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective changes in cytosolic β-adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy.
    Abi-Gerges A; Castro L; Leroy J; Domergue V; Fischmeister R; Vandecasteele G
    J Mol Cell Cardiol; 2021 Jan; 150():109-121. PubMed ID: 33184031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain.
    Bastug-Özel Z; Wright PT; Kraft AE; Pavlovic D; Howie J; Froese A; Fuller W; Gorelik J; Shattock MJ; Nikolaev VO
    Cardiovasc Res; 2019 Mar; 115(3):546-555. PubMed ID: 30165515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling.
    Nikolaev VO; Bünemann M; Schmitteckert E; Lohse MJ; Engelhardt S
    Circ Res; 2006 Nov; 99(10):1084-91. PubMed ID: 17038640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells.
    Zhai K; Hubert F; Nicolas V; Ji G; Fischmeister R; Leblais V
    PLoS One; 2012; 7(10):e47826. PubMed ID: 23094097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of adenylyl cyclase isoform 5 or 6 differentially modifies the β
    Cosson MV; Hiis HG; Moltzau LR; Levy FO; Krobert KA
    J Mol Cell Cardiol; 2019 Jun; 131():132-145. PubMed ID: 31009605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure.
    Schobesberger S; Wright P; Tokar S; Bhargava A; Mansfield C; Glukhov AV; Poulet C; Buzuk A; Monszpart A; Sikkel M; Harding SE; Nikolaev VO; Lyon AR; Gorelik J
    Cardiovasc Res; 2017 Jun; 113(7):770-782. PubMed ID: 28505272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture.
    Faleeva M; Diakonov I; Srivastava P; Ramuz M; Calamera G; Andressen KW; Bork N; Tsansizi L; Cosson MV; Bernardo AS; Nikolaev V; Gorelik J
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model.
    Mika D; Bobin P; Lindner M; Boet A; Hodzic A; Lefebvre F; Lechène P; Sadoune M; Samuel JL; Algalarrondo V; Rucker-Martin C; Lambert V; Fischmeister R; Vandecasteele G; Leroy J
    J Mol Cell Cardiol; 2019 Aug; 133():57-66. PubMed ID: 31158360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiomyocyte Membrane Structure and cAMP Compartmentation Produce Anatomical Variation in β
    Wright PT; Bhogal NK; Diakonov I; Pannell LMK; Perera RK; Bork NI; Schobesberger S; Lucarelli C; Faggian G; Alvarez-Laviada A; Zaccolo M; Kamp TJ; Balijepalli RC; Lyon AR; Harding SE; Nikolaev VO; Gorelik J
    Cell Rep; 2018 Apr; 23(2):459-469. PubMed ID: 29642004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy with phosphodiesterases 2A and 4B ameliorates heart failure and arrhythmias by improving subcellular cAMP compartmentation.
    Pavlaki N; Froese A; Li W; De Jong KA; Geertz B; Subramanian H; Mohagaonkar S; Luo X; Schubert M; Wiegmann R; Margaria JP; Ghigo A; Kämmerer S; Hirsch E; El-Armouche A; Guan K; Nikolaev VO
    Cardiovasc Res; 2024 Jul; 120(9):1011-1023. PubMed ID: 38776406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells.
    Belacel-Ouari M; Zhang L; Hubert F; Assaly R; Gerbier R; Jockers R; Dauphin F; Lechêne P; Fischmeister R; Manoury B; Leblais V
    Cell Signal; 2017 Jul; 35():118-128. PubMed ID: 28389413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule-Mediated Regulation of β
    Kwan Z; Paulose Nadappuram B; Leung MM; Mohagaonkar S; Li A; Amaradasa KS; Chen J; Rothery S; Kibreab I; Fu J; Sanchez-Alonso JL; Mansfield CA; Subramanian H; Kondrashov A; Wright PT; Swiatlowska P; Nikolaev VO; Wojciak-Stothard B; Ivanov AP; Edel JB; Gorelik J
    Circ Res; 2023 Nov; 133(11):944-958. PubMed ID: 37869877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism regulating proasthmatic effects of prolonged homologous beta2-adrenergic receptor desensitization in airway smooth muscle.
    Nino G; Hu A; Grunstein JS; Grunstein MM
    Am J Physiol Lung Cell Mol Physiol; 2009 Oct; 297(4):L746-57. PubMed ID: 19666775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.