These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33053904)

  • 1. Novel Bioformulations Developed from
    Mishra I; Fatima T; Egamberdieva D; Arora NK
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33053904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus.
    Khare E; Arora NK
    World J Microbiol Biotechnol; 2021 Feb; 37(4):55. PubMed ID: 33615389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioformulation of
    Mukadam H; Gaikwad SV; Kutty NN; Gaikwad VD
    Front Bioeng Biotechnol; 2024; 12():1362679. PubMed ID: 38707507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.
    Singh AK; Cameotra SS
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1038-56. PubMed ID: 23640260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of melatonin and PGPR alleviates thiamethoxam induced toxicity by regulating the TCA cycle in
    Jan S; Singh B; Bhardwaj R; Kapoor D; Kour J; Singh R; Alam P; Noureldeen A; Darwish H
    Saudi J Biol Sci; 2022 Mar; 29(3):1348-1354. PubMed ID: 35280551
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Chopra A; Bobate S; Rahi P; Banpurkar A; Mazumder PB; Satpute S
    Front Bioeng Biotechnol; 2020; 8():861. PubMed ID: 32850725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops.
    Kalita M; Bharadwaz M; Dey T; Gogoi K; Dowarah P; Unni BG; Ozah D; Saikia I
    Indian J Exp Biol; 2015 Jan; 53(1):56-60. PubMed ID: 25675713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of petroleum contaminated soil through biosurfactant and
    Ambust S; Das AJ; Kumar R
    Curr Res Microb Sci; 2021 Dec; 2():100031. PubMed ID: 34841322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1.
    Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M
    J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria.
    Rajkumar M; Lee KJ; Lee WH; Banu JR
    J Environ Biol; 2005 Oct; 26(4):693-9. PubMed ID: 16459559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.
    Ma Y; Rajkumar M; Freitas H
    Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic siloxane biosurfactant-producing Bacillus cereus BS14 biocontrols charcoal rot pathogen Macrophomina phaseolina and induces growth promotion in Vigna mungo L.
    Kumar S; Dheeman S; Dubey RC; Maheshwari DK; Baliyan N
    Arch Microbiol; 2021 Oct; 203(8):5043-5054. PubMed ID: 34292347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of biosurfactant producing
    Chaurasia LK; Tamang B; Tirwa RK; Lepcha PL
    3 Biotech; 2020 Jul; 10(7):297. PubMed ID: 32550114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge.
    Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil.
    Arutchelvi J; Doble M
    Lett Appl Microbiol; 2010 Jul; 51(1):75-82. PubMed ID: 20477962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonasputida isolated from mustard (Brassica compestris) rhizosphere.
    Ahemad M; Khan MS
    Chemosphere; 2012 Mar; 86(9):945-50. PubMed ID: 22133911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.