These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33053904)

  • 21. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum.
    Goswami D; Borah SN; Lahkar J; Handique PJ; Deka S
    J Basic Microbiol; 2015 Nov; 55(11):1265-74. PubMed ID: 26173581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a New Rhamnolipid Biosurfactant Complex from
    Shreve GS; Makula R
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.
    Singh PB; Sharma S; Saini HS; Chadha BS
    Lett Appl Microbiol; 2009 Sep; 49(3):378-83. PubMed ID: 19627480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815.
    Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM
    Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.
    Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials.
    A A; E K R; Mathew J
    J Biotechnol; 2020 Apr; 313():1-10. PubMed ID: 32151643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora.
    Tripathi L; Twigg MS; Zompra A; Salek K; Irorere VU; Gutierrez T; Spyroulias GA; Marchant R; Banat IM
    Microb Cell Fact; 2019 Oct; 18(1):164. PubMed ID: 31597569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-culture development and bioformulation efficacy of psychrotrophic PGPRs to promote growth and development of Pea (Pisum sativum) plant.
    Anwar MS; Paliwal A; Firdous N; Verma A; Kumar A; Pande V
    J Gen Appl Microbiol; 2019 May; 65(2):88-95. PubMed ID: 30381611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.
    Varjani SJ; Upasani VN
    Bioresour Technol; 2016 Dec; 221():510-516. PubMed ID: 27677153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam.
    Tran H; Kruijt M; Raaijmakers JM
    J Appl Microbiol; 2008 Mar; 104(3):839-51. PubMed ID: 17976176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic and Functional Characterization of Culturable Endophytic Actinobacteria Associated With
    Borah A; Thakur D
    Front Microbiol; 2020; 11():318. PubMed ID: 32180767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent.
    Nalini S; Parthasarathi R
    Bioresour Technol; 2014 Dec; 173():231-238. PubMed ID: 25305653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.
    Aparna A; Srinikethan G; Smitha H
    Colloids Surf B Biointerfaces; 2012 Jun; 95():23-9. PubMed ID: 22445235
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Hassen W; Neifar M; Cherif H; Najjari A; Chouchane H; Driouich RC; Salah A; Naili F; Mosbah A; Souissi Y; Raddadi N; Ouzari HI; Fava F; Cherif A
    Front Microbiol; 2018; 9():34. PubMed ID: 29527191
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Wu T; Xu J; Xie W; Yao Z; Yang H; Sun C; Li X
    Front Microbiol; 2018; 9():1087. PubMed ID: 29887849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.
    Santoro MV; Cappellari LR; Giordano W; Banchio E
    Plant Biol (Stuttg); 2015 Nov; 17(6):1218-26. PubMed ID: 26012535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosurfactant production by Pseudomonas strains isolated from floral nectar.
    Ben Belgacem Z; Bijttebier S; Verreth C; Voorspoels S; Van de Voorde I; Aerts G; Willems KA; Jacquemyn H; Ruyters S; Lievens B
    J Appl Microbiol; 2015 Jun; 118(6):1370-84. PubMed ID: 25801599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.
    Saikia RR; Deka S; Deka M; Sarma H
    J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana.
    Chu TN; Tran BTH; Van Bui L; Hoang MTT
    BMC Res Notes; 2019 Jan; 12(1):11. PubMed ID: 30635071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.