BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33054160)

  • 1. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology.
    Greguš M; Kostas JC; Ray S; Abbatiello SE; Ivanov AR
    Anal Chem; 2020 Nov; 92(21):14702-14712. PubMed ID: 33054160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples.
    Johnson KR; Greguš M; Ivanov AR
    J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.
    Rosting C; Yu J; Cooper HJ
    J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue.
    Eckert S; Chang YC; Bayer FP; The M; Kuhn PH; Weichert W; Kuster B
    J Proteome Res; 2021 Dec; 20(12):5402-5411. PubMed ID: 34735149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components.
    Xia YQ; Wu ST; Jemal M
    Anal Chem; 2008 Sep; 80(18):7137-43. PubMed ID: 18652493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics.
    Canterbury JD; Yi X; Hoopmann MR; MacCoss MJ
    Anal Chem; 2008 Sep; 80(18):6888-97. PubMed ID: 18693747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests.
    Swearingen KE; Hoopmann MR; Johnson RS; Saleem RA; Aitchison JD; Moritz RL
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.014985. PubMed ID: 22186714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics.
    Creese AJ; Shimwell NJ; Larkins KP; Heath JK; Cooper HJ
    J Am Soc Mass Spectrom; 2013 Mar; 24(3):431-43. PubMed ID: 23400772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer.
    Hebert AS; Prasad S; Belford MW; Bailey DJ; McAlister GC; Abbatiello SE; Huguet R; Wouters ER; Dunyach JJ; Brademan DR; Westphall MS; Coon JJ
    Anal Chem; 2018 Aug; 90(15):9529-9537. PubMed ID: 29969236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in peptide detection for proteomics analyses using NanoLC-MS and high-field asymmetry waveform ion mobility mass spectrometry.
    Venne K; Bonneil E; Eng K; Thibault P
    Anal Chem; 2005 Apr; 77(7):2176-86. PubMed ID: 15801752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.
    Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV
    Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAIMS Enhances the Detection of PTM Crosstalk Sites.
    Adoni KR; Cunningham DL; Heath JK; Leney AC
    J Proteome Res; 2022 Apr; 21(4):930-939. PubMed ID: 35235327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry.
    Luo Q; Tang K; Yang F; Elias A; Shen Y; Moore RJ; Zhao R; Hixson KK; Rossie SS; Smith RD
    J Proteome Res; 2006 May; 5(5):1091-7. PubMed ID: 16674098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-microm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis.
    Luo Q; Yue G; Valaskovic GA; Gu Y; Wu SL; Karger BL
    Anal Chem; 2007 Aug; 79(16):6174-81. PubMed ID: 17625912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer.
    Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P
    Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.