BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33054202)

  • 1. Surface-Engineered Nanomaterials in Water: Understanding Critical Dynamics of Soft Organic Coatings and Relative Aggregation Density.
    Kim C; Fortner JD
    Environ Sci Technol; 2020 Nov; 54(21):13548-13555. PubMed ID: 33054202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Functionalized Graphene Oxide Behavior in Water.
    Kim C; Lee J; Wang W; Fortner J
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32599799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of water chemistry on homoaggregations of various nanoparticles: specific role of Cl⁻ ions.
    Lin D; Ma S; Zhou K; Wu F; Yang K
    J Colloid Interface Sci; 2015 Jul; 450():272-278. PubMed ID: 25828434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y
    Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and Colloidal Stability of Commercially Available Al₂O₃ Nanoparticles in Aqueous Environments.
    Mui J; Ngo J; Kim B
    Nanomaterials (Basel); 2016 May; 6(5):. PubMed ID: 28335218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water.
    Metreveli G; David J; Schneider R; Kurtz S; Schaumann GE
    Sci Total Environ; 2020 Oct; 739():139989. PubMed ID: 32535467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of CeO
    Li X; He E; Zhang M; Peijnenburg WJGM; Liu Y; Song L; Cao X; Zhao L; Qiu H
    J Hazard Mater; 2020 Mar; 386():121973. PubMed ID: 31884366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.
    Van Hoecke K; De Schamphelaere KA; Ramirez-Garcia S; Van der Meeren P; Smagghe G; Janssen CR
    Environ Int; 2011 Aug; 37(6):1118-25. PubMed ID: 21377208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Removal of CuO Nanoparticles from Water by Conventional Treatment C/F/S: The Effect of pH and Natural Organic Matter.
    Khan R; Inam MA; Park DR; Khan S; Akram M; Yeom IT
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile Route to Colloidal Stability and Surface Functionalization of Hydrophobic Nanomaterials.
    Culver HR; Steichen SD; Herrera-Alonso M; Peppas NA
    Langmuir; 2016 Jun; 32(22):5629-36. PubMed ID: 27203863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media.
    Plohl O; Kralj S; Majaron B; Fröhlich E; Ponikvar-Svet M; Makovec D; Lisjak D
    Dalton Trans; 2017 May; 46(21):6975-6984. PubMed ID: 28513723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of CeO
    Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H
    Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications.
    Li W; Liu D; Wu J; Kim C; Fortner JD
    Environ Sci Technol; 2014 Oct; 48(20):11892-900. PubMed ID: 25222070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles.
    Dung NT; Long NV; Tam LTT; Nam PH; Tung LD; Phuc NX; Lu LT; Kim Thanh NT
    Nanoscale; 2017 Jul; 9(26):8952-8961. PubMed ID: 28267161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.