BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33054202)

  • 21. A multifunctional amphiphilic polymer as a platform for surface-functionalizing metallic and other inorganic nanostructures.
    Wang W; Aldeek F; Ji X; Zeng B; Mattoussi H
    Faraday Discuss; 2014; 175():137-51. PubMed ID: 25288016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer.
    Shtykova EV; Huang X; Gao X; Dyke JC; Schmucker AL; Dragnea B; Remmes N; Baxter DV; Stein B; Konarev PV; Svergun DI; Bronstein LM
    J Phys Chem C Nanomater Interfaces; 2008; 112(43):16809-16817. PubMed ID: 19194520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings.
    Li W; Troyer LD; Lee SS; Wu J; Kim C; Lafferty BJ; Catalano JG; Fortner JD
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13163-13172. PubMed ID: 28338312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation of ferrihydrite nanoparticles: Effects of pH, electrolytes,and organics.
    Liu J; Louie SM; Pham C; Dai C; Liang D; Hu Y
    Environ Res; 2019 May; 172():552-560. PubMed ID: 30856401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter.
    Baalousha M
    Sci Total Environ; 2009 Mar; 407(6):2093-101. PubMed ID: 19059631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics.
    Afshinnia K; Sikder M; Cai B; Baalousha M
    J Colloid Interface Sci; 2017 Feb; 487():192-200. PubMed ID: 27770683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches.
    Liu X; Chen G; Su C
    Environ Sci Technol; 2012 Jun; 46(12):6681-8. PubMed ID: 22621432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of iron oxide nanoparticles in high sodium and calcium brine at high temperatures with adsorbed sulfonated copolymers.
    Bagaria HG; Yoon KY; Neilson BM; Cheng V; Lee JH; Worthen AJ; Xue Z; Huh C; Bryant SL; Bielawski CW; Johnston KP
    Langmuir; 2013 Mar; 29(10):3195-206. PubMed ID: 23373590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid.
    Liu J; Dai C; Hu Y
    Environ Res; 2018 Feb; 161():49-60. PubMed ID: 29101829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications.
    Jiang G; Pichaandi J; Johnson NJ; Burke RD; van Veggel FC
    Langmuir; 2012 Feb; 28(6):3239-47. PubMed ID: 22250577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure.
    Navarro DA; Depner SW; Watson DF; Aga DS; Banerjee S
    J Hazard Mater; 2011 Nov; 196():302-10. PubMed ID: 21963173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.
    Ghosh S; Jiang W; McClements JD; Xing B
    Langmuir; 2011 Jul; 27(13):8036-43. PubMed ID: 21650201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic coatings for environmental applications.
    Allen NS; Edge M; Sandoval G; Verran J; Stratton J; Maltby J
    Photochem Photobiol; 2005; 81(2):279-90. PubMed ID: 15279507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water-dispersible, pH-stable and highly-luminescent organic dye nanoparticles with amplified emissions for in vitro and in vivo bioimaging.
    Yu J; Diao X; Zhang X; Chen X; Hao X; Li W; Zhang X; Lee CS
    Small; 2014 Mar; 10(6):1125-32. PubMed ID: 24318966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystalline phase and surface coating of Al
    Zhu B; Wei X; Song J; Zhang Q; Jiang W
    Chemosphere; 2020 May; 247():125876. PubMed ID: 31978652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution.
    Lin D; Cai P; Peacock CL; Wu Y; Gao C; Peng W; Huang Q; Liang W
    Sci Total Environ; 2018 Dec; 645():372-379. PubMed ID: 30029116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles.
    Abdelmonem AM; Pelaz B; Kantner K; Bigall NC; Del Pino P; Parak WJ
    J Inorg Biochem; 2015 Dec; 153():334-338. PubMed ID: 26387023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement and Surface Complexation Modeling of U(VI) Adsorption to Engineered Iron Oxide Nanoparticles.
    Pan Z; Li W; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Aug; 51(16):9219-9226. PubMed ID: 28749653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.