These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33054231)

  • 1. Scalable Chemical Synthesis Route to Manufacture pH-Responsive Janus CaCO
    Saad S; Kaur H; Natale G
    Langmuir; 2020 Oct; 36(42):12590-12600. PubMed ID: 33054231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble-Propelled Micromotors.
    Moo JG; Wang H; Pumera M
    Chemistry; 2016 Jan; 22(1):355-60. PubMed ID: 26526004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pickering Emulsion Route to Swimming Active Janus Colloids.
    Archer RJ; Parnell AJ; Campbell AI; Howse JR; Ebbens SJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700528. PubMed ID: 29619303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Driven Au-WO
    Zhang Q; Dong R; Wu Y; Gao W; He Z; Ren B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4674-4683. PubMed ID: 28097861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking.
    Yu T; Chuphal P; Thakur S; Reigh SY; Singh DP; Fischer P
    Chem Commun (Camb); 2018 Oct; 54(84):11933-11936. PubMed ID: 30285014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of surface charge on the motion of light-activated Janus micromotors.
    Huang T; Ibarlucea B; Caspari A; Synytska A; Cuniberti G; de Graaf J; Baraban L
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):39. PubMed ID: 33755813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pickering emulsion as a template to synthesize Janus colloids with anisotropy in the surface potential.
    Pardhy NP; Budhlall BM
    Langmuir; 2010 Aug; 26(16):13130-41. PubMed ID: 20695551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling nucleation and growth of nano-CaCO
    Palmqvist NGM; Nedelec JM; Seisenbaeva GA; Kessler VG
    Acta Biomater; 2017 Jul; 57():426-434. PubMed ID: 28483694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery.
    Moreira AF; Gaspar VM; Costa EC; de Melo-Diogo D; Machado P; Paquete CM; Correia IJ
    Eur J Pharm Biopharm; 2014 Nov; 88(3):1012-25. PubMed ID: 25229810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core@Satellite Janus Nanomotors with pH-Responsive Multi-phoretic Propulsion.
    Xing Y; Zhou M; Xu T; Tang S; Fu Y; Du X; Su L; Wen Y; Zhang X; Ma T
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14368-14372. PubMed ID: 32506778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ.
    Guix M; Meyer AK; Koch B; Schmidt OG
    Sci Rep; 2016 Feb; 6():21701. PubMed ID: 26905939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiwavelength Light-Responsive Au/B-TiO
    Jang B; Hong A; Kang HE; Alcantara C; Charreyron S; Mushtaq F; Pellicer E; Büchel R; Sort J; Lee SS; Nelson BJ; Pané S
    ACS Nano; 2017 Jun; 11(6):6146-6154. PubMed ID: 28590716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.
    Wang S; Wu N
    Langmuir; 2014 Apr; 30(12):3477-86. PubMed ID: 24593832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition.
    Ying Y; Pourrahimi AM; Manzanares-Palenzuela CL; Novotny F; Sofer Z; Pumera M
    Small; 2020 Jul; 16(27):e1902944. PubMed ID: 31464380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusiophoresis of active colloids in viscoelastic media.
    Saad S; Natale G
    Soft Matter; 2019 Dec; 15(48):9909-9919. PubMed ID: 31748761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with a Conventional Zwitterionic Surfactant.
    Liu K; Jiang J; Cui Z; Binks BP
    Langmuir; 2017 Mar; 33(9):2296-2305. PubMed ID: 28191963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Studies of Light-Responsive Swimmers: Janus Nanorods versus Spherical Particles.
    Eichler-Volf A; Huang T; Vazquez Luna F; Alsaadawi Y; Stierle S; Cuniberti G; Steinhart M; Baraban L; Erbe A
    Langmuir; 2020 Oct; 36(42):12504-12512. PubMed ID: 33054235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.