BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33054622)

  • 1. Characterization of the Populations of
    Yang R; Li N; Zhou Z; Li G
    Plant Dis; 2021 Jul; 105(7):1890-1897. PubMed ID: 33054622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic and Genetic Characterization of Botrytis cinerea Population from Kiwifruit in Sichuan Province, China.
    Pei YG; Tao QJ; Zheng XJ; Li Y; Sun XF; Li ZF; Qi XB; Xu J; Zhang M; Chen HB; Chang XL; Tang HM; Sui LY; Gong GS
    Plant Dis; 2019 Apr; 103(4):748-758. PubMed ID: 30789316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Botrytis cinerea Isolates From Grape Vineyards in China.
    Zhang Y; Li X; Shen F; Xu H; Li Y; Liu D
    Plant Dis; 2018 Jan; 102(1):40-48. PubMed ID: 30673451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence of Botrytis Cryptic Species in Strawberry Nursery Transplants and Strawberry and Blueberry Commercial Fields in the Eastern United States.
    Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2018 Feb; 102(2):398-404. PubMed ID: 30673521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in Frequency of Transposable Elements Presence in Botrytis cinerea Populations from Several Hosts in Greece.
    Samuel S; Veloukas T; Papavasileiou A; Karaoglanidis GS
    Plant Dis; 2012 Sep; 96(9):1286-1290. PubMed ID: 30727158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First Report of Fenhexamid Resistant Isolates of Botrytis cinerea on Grapevine in Chile.
    Esterio M; Auger J; Ramos C; García H
    Plant Dis; 2007 Jun; 91(6):768. PubMed ID: 30780494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The natural fenhexamid-resistant grey mould populations from strawberry in Zhejiang Province are dominated by Botrytis cinerea group S.
    Yin D; Wu S; Liu N; Yin Y; Ma Z
    Pest Manag Sci; 2016 Aug; 72(8):1540-8. PubMed ID: 26537826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary.
    Fekete É; Fekete E; Irinyi L; Karaffa L; Árnyasi M; Asadollahi M; Sándor E
    Microbiol Res; 2012 May; 167(5):283-91. PubMed ID: 22130648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay.
    Polat İ; Baysal Ö; Mercati F; Gümrükcü E; Sülü G; Kitapcı A; Araniti F; Carimi F
    Infect Genet Evol; 2018 Jun; 60():151-159. PubMed ID: 29505818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Structure of Botrytis cinerea Populations from Different Host Plants in California.
    Ma Z; Michailides TJ
    Plant Dis; 2005 Oct; 89(10):1083-1089. PubMed ID: 30791276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness.
    Zhou Y; Li N; Yang J; Yang L; Wu M; Chen W; Li G; Zhang J
    Plant Dis; 2018 Feb; 102(2):428-436. PubMed ID: 30673519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sexual recombination in the Botrytis cinerea populations in Hungarian vineyards.
    Váczy KZ; Sándor E; Karaffa L; Fekete E; Fekete E; Arnyasi M; Czeglédi L; Kövics GJ; Druzhinina IS; Kubicek CP
    Phytopathology; 2008 Dec; 98(12):1312-9. PubMed ID: 19000006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Report of Botrytis pseudocinerea Causing Gray Mold on Tomato (Lycopersicon esculentum) in Central China.
    Li N; Zhang J; Yang L; Wu MD; Li GQ
    Plant Dis; 2015 Feb; 99(2):283. PubMed ID: 30699576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Botrytis cinerea Isolates Present in Thompson Seedless Table Grapes in the Central Valley of Chile.
    Esterio M; Muñoz G; Ramos C; Cofré G; Estévez R; Salinas A; Auger J
    Plant Dis; 2011 Jun; 95(6):683-690. PubMed ID: 30731896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification and characterization of
    Notte AM; Plaza V; Marambio-Alvarado B; Olivares-Urbina L; Poblete-Morales M; Silva-Moreno E; Castillo L
    Curr Res Microb Sci; 2021 Dec; 2():100049. PubMed ID: 34841340
    [No Abstract]   [Full Text] [Related]  

  • 16. Detection and Molecular Characterization of Resistance to the Dicarboximide and Benzamide Fungicides in Botrytis cinerea From Tomato in Hubei Province, China.
    Adnan M; Hamada MS; Li GQ; Luo CX
    Plant Dis; 2018 Jul; 102(7):1299-1306. PubMed ID: 30673571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China.
    Sang C; Ren W; Wang J; Xu H; Zhang Z; Zhou M; Chen C; Wang K
    Pestic Biochem Physiol; 2018 May; 147():110-118. PubMed ID: 29933980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to Boscalid in
    Liu S; Fu L; Tan H; Jiang J; Che Z; Tian Y; Chen G
    Plant Dis; 2021 Mar; 105(3):628-635. PubMed ID: 32820676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Biological Characteristics and Molecular Mechanisms of Fludioxonil-Resistant Isolates of
    Chen L; Sun B; Zhao Y; Xiang P; Miao Z
    Plant Dis; 2022 Jul; 106(7):1959-1970. PubMed ID: 35678566
    [No Abstract]   [Full Text] [Related]  

  • 20. Under Pressure: A Comparative Study of
    Makris G; Nikoloudakis N; Samaras A; Karaoglanidis GS; Kanetis LI
    Phytopathology; 2022 Oct; 112(10):2236-2247. PubMed ID: 35671479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.