These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33055017)
1. Evaluation of Existing Methods for High-Order Epistasis Detection. Ponte-Fernandez C; Gonzalez-Dominguez J; Carvajal-Rodriguez A; Martin MJ IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):912-926. PubMed ID: 33055017 [TBL] [Abstract][Full Text] [Related]
2. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
3. Performance of epistasis detection methods in semi-simulated GWAS. Chatelain C; Durand G; Thuillier V; Augé F BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375 [TBL] [Abstract][Full Text] [Related]
4. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
5. An empirical comparison of several recent epistatic interaction detection methods. Wang Y; Liu G; Feng M; Wong L Bioinformatics; 2011 Nov; 27(21):2936-43. PubMed ID: 21903628 [TBL] [Abstract][Full Text] [Related]
6. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
7. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
8. Aggregation of experts: an application in the field of "interactomics" (detection of interactions on the basis of genomic data). Abo Alchamlat S; Farnir F BMC Bioinformatics; 2018 Nov; 19(1):445. PubMed ID: 30497383 [TBL] [Abstract][Full Text] [Related]
10. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
11. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS. Niel C; Sinoquet C; Dina C; Rocheleau G Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902 [TBL] [Abstract][Full Text] [Related]
12. TEAM: efficient two-locus epistasis tests in human genome-wide association study. Zhang X; Huang S; Zou F; Wang W Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910 [TBL] [Abstract][Full Text] [Related]
13. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment. Zhu S; Fang G Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873 [TBL] [Abstract][Full Text] [Related]
14. An Approach of Epistasis Detection Using Integer Linear Programming Optimizing Bayesian Network. Yang X; Yang C; Lei J; Liu J IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2654-2671. PubMed ID: 34181547 [TBL] [Abstract][Full Text] [Related]
15. An exhaustive epistatic SNP association analysis on expanded Wellcome Trust data. Lippert C; Listgarten J; Davidson RI; Baxter S; Poon H; Kadie CM; Heckerman D Sci Rep; 2013; 3():1099. PubMed ID: 23346356 [TBL] [Abstract][Full Text] [Related]
16. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. He T; Hill CB; Angessa TT; Zhang XQ; Chen K; Moody D; Telfer P; Westcott S; Li C J Exp Bot; 2019 Oct; 70(20):5603-5616. PubMed ID: 31504706 [TBL] [Abstract][Full Text] [Related]