BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33055032)

  • 21. Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology.
    Myatt DR; Hadlington T; Ascoli GA; Nasuto SJ
    Front Neuroinform; 2012; 6():4. PubMed ID: 22438842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study.
    Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M
    J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuron tracing from light microscopy images: automation, deep learning and bench testing.
    Liu Y; Wang G; Ascoli GA; Zhou J; Liu L
    Bioinformatics; 2022 Dec; 38(24):5329-5339. PubMed ID: 36303315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global User-Level Perception of COVID-19 Contact Tracing Applications: Data-Driven Approach Using Natural Language Processing.
    Ahmad K; Alam F; Qadir J; Qolomany B; Khan I; Khan T; Suleman M; Said N; Hassan SZ; Gul A; Househ M; Al-Fuqaha A
    JMIR Form Res; 2022 May; 6(5):e36238. PubMed ID: 35389357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of the optimal neuron traces in confocal microscopy images.
    Vasilkoski Z; Stepanyants A
    J Neurosci Methods; 2009 Mar; 178(1):197-204. PubMed ID: 19059434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.
    Kling-Petersen T; Pascher R; Rydmark M
    Stud Health Technol Inform; 1999; 62():181-6. PubMed ID: 10538352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking.
    Liu S; Zhang D; Liu S; Feng D; Peng H; Cai W
    Neuroinformatics; 2016 Oct; 14(4):387-401. PubMed ID: 27184384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Neuron Tracing Using Content-Aware Adaptive Voxel Scooping on CNN Predicted Probability Map.
    Huang Q; Cao T; Chen Y; Li A; Zeng S; Quan T
    Front Neuroanat; 2021; 15():712842. PubMed ID: 34497493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multipurpose Virtual Reality Environment for Biomedical and Health Applications.
    Torner J; Skouras S; Molinuevo JL; Gispert JD; Alpiste F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1511-1520. PubMed ID: 31283482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation.
    Radojević M; Meijering E
    Neuroinformatics; 2019 Jul; 17(3):423-442. PubMed ID: 30542954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep-Learning-Based Automated Neuron Reconstruction From 3D Microscopy Images Using Synthetic Training Images.
    Chen W; Liu M; Du H; Radojevic M; Wang Y; Meijering E
    IEEE Trans Med Imaging; 2022 May; 41(5):1031-1042. PubMed ID: 34847022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree.
    Wan Z; He Y; Hao M; Yang J; Zhong N
    BMC Bioinformatics; 2017 Mar; 18(1):197. PubMed ID: 28356056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weakly Supervised Learning of 3D Deep Network for Neuron Reconstruction.
    Huang Q; Chen Y; Liu S; Xu C; Cao T; Xu Y; Wang X; Rao G; Li A; Zeng S; Quan T
    Front Neuroanat; 2020; 14():38. PubMed ID: 32848636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.
    Zandt BJ; Losnegård A; Hodneland E; Veruki ML; Lundervold A; Hartveit E
    J Neurosci Methods; 2017 Mar; 279():101-118. PubMed ID: 28115187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immersive Process Model Exploration in Virtual Reality.
    Zenner A; Makhsadov A; Klingner S; Liebemann D; Kruger A
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):2104-2114. PubMed ID: 32070982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foveated Photon Mapping.
    Shi X; Wang L; Wei X; Yan LQ
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4183-4193. PubMed ID: 34449375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DICOM 3D viewers, virtual reality or 3D printing - a pilot usability study for assessing the preference of orthopedic surgeons.
    Popescu D; Marinescu R; Laptoiu D; Deac GC; Cotet CE
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1014-1024. PubMed ID: 34176364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Neuron Tracing Methods: An Updated Account.
    Acciai L; Soda P; Iannello G
    Neuroinformatics; 2016 Oct; 14(4):353-67. PubMed ID: 27447185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.