These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33055376)

  • 21. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC.
    Guo SD; Guo XS; Dong J
    J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Four-phonon and electron-phonon scattering effects on thermal properties in two-dimensional 2H-TaS
    Zhang Y; Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Nanoscale; 2022 Sep; 14(36):13053-13058. PubMed ID: 36040796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity.
    He J; Yu C; Lu S; Shan S; Zhang Z; Chen J
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37804826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The disparate effect of strain on thermal conductivity of 2-D materials.
    Dheeraj KVS; Sathian SP
    Phys Chem Chem Phys; 2021 Oct; 23(40):23096-23105. PubMed ID: 34617094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the thermal conductivity of MOF-5 from first principles.
    Zhang S; Liu J; Liu L
    RSC Adv; 2021 Nov; 11(58):36928-36933. PubMed ID: 35494339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN.
    Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on lattice dynamics and thermal conductivity of fluorite AF
    Liu P; Zhao Y; Wang X; Ni J; Dai Z
    Phys Chem Chem Phys; 2024 Apr; 26(14):10868-10879. PubMed ID: 38525602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study.
    Banerjee A; Das BK; Chattopadhyay KK
    Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga
    Yan Z; Kumar S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29236-29242. PubMed ID: 30427340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD; Liu BG
    J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites.
    Elalfy L; Music D; Hu M
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant reduction in thermal conductivity of single-chain polyvinylidene fluoride (PVDF) under external tensile strain.
    Ma T; Wang Y
    Phys Chem Chem Phys; 2022 May; 24(18):11315-11321. PubMed ID: 35485867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size dependent reduction rate.
    Zhu L; Zhang T; Sun Z; Li J; Chen G; Yang SA
    Nanotechnology; 2015 Nov; 26(46):465707. PubMed ID: 26511672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.