These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33055376)

  • 41. Resonant bonding leads to low lattice thermal conductivity.
    Lee S; Esfarjani K; Luo T; Zhou J; Tian Z; Chen G
    Nat Commun; 2014 Apr; 5():3525. PubMed ID: 24770354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lattice Thermal Transport in Monolayer Group 13 Monochalcogenides MX (M = Ga, In; X = S, Se, Te): Interplay of Atomic Mass, Harmonicity, and Lone-Pair-Induced Anharmonicity.
    Nissimagoudar AS; Rashid Z; Ma J; Li W
    Inorg Chem; 2020 Oct; 59(20):14899-14909. PubMed ID: 32993283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low lattice thermal conductivity of stanene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang X; Zhu H
    Sci Rep; 2016 Feb; 6():20225. PubMed ID: 26838731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating thermal transport in a porous carbon honeycomb using cutting and deformation techniques.
    Han Y; Zhao C; Bai H; Li Y; Yang J; Chen YT; Hong G; Lacroix D; Isaiev M
    Phys Chem Chem Phys; 2022 Feb; 24(5):3207-3215. PubMed ID: 35044393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revisiting the thermal conductivity of Si, Ge and diamond from first principles: roles of atomic mass and interatomic potential.
    Guo G; Yang X; Carrete J; Li W
    J Phys Condens Matter; 2021 May; 33(28):. PubMed ID: 33930883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pressure effects on the anomalous thermal transport and anharmonic lattice dynamics of CsX (X = Cl, Br, and I).
    Li S; Zeng Z; Pu Y; Chen Y
    Phys Chem Chem Phys; 2022 Dec; 24(48):29961-29965. PubMed ID: 36468690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides.
    Zhang J; Li X; Xiao K; Sumpter BG; Ghosh AW; Liang L
    J Phys Condens Matter; 2020 Jan; 32(2):025306. PubMed ID: 31581144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering.
    Zhu L; Li W; Ding F
    Nanoscale; 2019 Mar; 11(10):4248-4257. PubMed ID: 30623946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strain Effect on Thermoelectric Performance of InSe Monolayer.
    Wang Q; Han L; Wu L; Zhang T; Li S; Lu P
    Nanoscale Res Lett; 2019 Aug; 14(1):287. PubMed ID: 31428878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D; Kannam SK; Sathian SP
    Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First-principles calculations of phonon behaviors in graphether: a comparative study with graphene.
    Yang X; Han D; Fan H; Wang M; Du M; Wang X
    Phys Chem Chem Phys; 2021 Jan; 23(1):123-130. PubMed ID: 33331842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quasi-one-dimensional thermal transport in trigonal selenium crystal.
    Peng H; Hou D; Chen G
    J Phys Condens Matter; 2021 Aug; 33(45):. PubMed ID: 34384051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Throughput Estimation of Phonon Thermal Conductivity from First-Principles Calculations of Elasticity.
    Yan S; Wang Y; Tao F; Ren J
    J Phys Chem A; 2022 Nov; 126(46):8771-8780. PubMed ID: 36351268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phonon and electron transport in Janus monolayers based on InSe.
    Wan W; Zhao S; Ge Y; Liu Y
    J Phys Condens Matter; 2019 Oct; 31(43):435501. PubMed ID: 31266000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.