These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Extensive Analysis on the Thermoelectric Properties of Aqueous Zn-Doped Nickel Ferrite Nanofluids for Magnetically Tuned Thermoelectric Applications. Kulandaivel A; Jawaharlal H ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35642333 [TBL] [Abstract][Full Text] [Related]
3. Characterization and Performance Enhancement of Cement-Based Thermoelectric Materials. Jani R; Holmes N; West R; Gaughan K; Liu X; Qu M; Orisakwe E; Stella L; Kohanoff J; Yin H; Wojciechowski B Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745887 [TBL] [Abstract][Full Text] [Related]
4. Largely Enhanced Seebeck Coefficient and Thermoelectric Performance by the Distortion of Electronic Density of States in Ge Hu P; Wei TR; Qiu P; Cao Y; Yang J; Shi X; Chen L ACS Appl Mater Interfaces; 2019 Sep; 11(37):34046-34052. PubMed ID: 31454228 [TBL] [Abstract][Full Text] [Related]
5. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms. Han MK; Jin Y; Lee DH; Kim SJ Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613 [TBL] [Abstract][Full Text] [Related]
6. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu Zhang D; Yang J; Jiang Q; Zhou Z; Li X; Xin J; Basit A; Ren Y; He X; Chu W; Hou J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28558-28565. PubMed ID: 28792200 [TBL] [Abstract][Full Text] [Related]
7. Magnetically enhancing the Seebeck coefficient in ferrofluids. Salez TJ; Kouyaté M; Filomeno C; Bonetti M; Roger M; Demouchy G; Dubois E; Perzynski R; Cēbers A; Nakamae S Nanoscale Adv; 2019 Aug; 1(8):2979-2989. PubMed ID: 36133602 [TBL] [Abstract][Full Text] [Related]
8. Variations of thermoelectric performance by electric fields in bilayer MX Wang RN; Dong GY; Wang SF; Fu GS; Wang JL Phys Chem Chem Phys; 2017 Feb; 19(8):5797-5805. PubMed ID: 28176989 [TBL] [Abstract][Full Text] [Related]
9. Formation and Evaluation of Silicon Substrate with Highly-Doped Porous Si Layers Formed by Metal-Assisted Chemical Etching. Li Y; Van Toan N; Wang Z; Samat KFB; Ono T Nanoscale Res Lett; 2021 Apr; 16(1):64. PubMed ID: 33877472 [TBL] [Abstract][Full Text] [Related]
10. High Power Thermoelectric Generator Based on Vertical Silicon Nanowires. Elyamny S; Dimaggio E; Magagna S; Narducci D; Pennelli G Nano Lett; 2020 Jul; 20(7):4748-4753. PubMed ID: 32463681 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materials. Musah JD; Yanjun X; Ilyas AM; Novak TG; Jeon S; Arava C; Novikov SV; Nikulin DS; Xu W; Liu L; Md A; Lam KH; Chen X; Wu CL; Roy VAL ACS Appl Mater Interfaces; 2019 Nov; 11(47):44026-44035. PubMed ID: 31738515 [TBL] [Abstract][Full Text] [Related]
12. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires. Zhuge F; Yanagida T; Fukata N; Uchida K; Kanai M; Nagashima K; Meng G; He Y; Rahong S; Li X; Kawai T J Am Chem Soc; 2014 Oct; 136(40):14100-6. PubMed ID: 25229842 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of vacancy-doped neodymium telluride for thermoelectric applications. Gomez SJ; Cheikh D; Vo T; Von Allmen P; Lee K; Wood M; Snyder GJ; Dunn BS; Fleurial JP; Bux SK Chem Mater; 2019 Jun; 31(12):4460-4468. PubMed ID: 31942089 [TBL] [Abstract][Full Text] [Related]
14. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
15. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K. Martin J; Nolas GS Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351 [TBL] [Abstract][Full Text] [Related]
16. Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films. Tran Nguyen NH; Nguyen TH; Liu YR; Aminzare M; Pham AT; Cho S; Wong DP; Chen KH; Seetawan T; Pham NK; Ta HK; Tran VC; Phan TB ACS Appl Mater Interfaces; 2016 Dec; 8(49):33916-33923. PubMed ID: 27960402 [TBL] [Abstract][Full Text] [Related]
17. Thermoelectric Performance of Na-Doped GeSe. Shaabani L; Aminorroaya-Yamini S; Byrnes J; Akbar Nezhad A; Blake GR ACS Omega; 2017 Dec; 2(12):9192-9198. PubMed ID: 29302637 [TBL] [Abstract][Full Text] [Related]
18. Possible Charge Density Wave and Enhancement of Thermoelectric Properties at Mild-Temperature Range in n-Type CuI-Doped Bi Cho H; Yun JH; Kim JH; Back SY; Lee HS; Kim SJ; Byeon S; Jin H; Rhyee JS ACS Appl Mater Interfaces; 2020 Jan; 12(1):925-933. PubMed ID: 31850742 [TBL] [Abstract][Full Text] [Related]
19. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface. Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133 [TBL] [Abstract][Full Text] [Related]
20. High Performance of Post-Treated PEDOT:PSS Thin Films for Thermoelectric Power Generation Applications. Paulraj I; Liang TF; Yang TS; Wang CH; Chen JL; Wang YW; Liu CJ ACS Appl Mater Interfaces; 2021 Sep; 13(36):42977-42990. PubMed ID: 34467759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]