These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 330554)

  • 21. In vivo synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases.
    Brevet A; Chen J; Lévêque F; Plateau P; Blanquet S
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8275-9. PubMed ID: 2554306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatography of plant aminoacyl-tRNA synthetases on omega-aminoalkyl sepharose columns.
    Jakubowski H; Pawelkiewicz J
    FEBS Lett; 1973 Aug; 34(2):150-4. PubMed ID: 4747837
    [No Abstract]   [Full Text] [Related]  

  • 23. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Small organic ligands.
    Clarke CM; Knowles JR
    Biochem J; 1977 Nov; 167(2):405-17. PubMed ID: 597251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver.
    Kellermann O; Brevet A; Tonetti H; Waller JP
    Eur J Biochem; 1979 Sep; 99(3):541-50. PubMed ID: 499214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eukaryotic aminoacyl-tRNA synthetases are RNA-binding proteins whereas prokaryotic ones are not.
    Alzhanova AT; Fedorov AN; Ovchinnikov LP; Spirin AS
    FEBS Lett; 1980 Nov; 120(2):225-9. PubMed ID: 6160056
    [No Abstract]   [Full Text] [Related]  

  • 26. Multiple forms of lysyl-tRNA synthetase from Escherichia coli.
    Dittgen RM; Leberman R
    Hoppe Seylers Z Physiol Chem; 1976 Apr; 357(4):543-51. PubMed ID: 786844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase.
    Hou YM; Shiba K; Mottes C; Schimmel P
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):976-80. PubMed ID: 1992490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comparative analysis of affinity modification of several aminoacyl-tRNA synthetases with gamma-(p-azidoanilide)-ATP].
    Bulychev NA; Lavrik OI; Nevinskiĭ GA
    Mol Biol (Mosk); 1980; 14(3):558-67. PubMed ID: 6995829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
    Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM
    J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Purification and properties of phenylalanyl-tRNA-synthetase from Escherichia coli MRE-600].
    Ankilova VN; Lavrik OI; Khodyreva SN
    Prikl Biokhim Mikrobiol; 1984; 20(2):208-16. PubMed ID: 6371782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase.
    Webster T; Tsai H; Kula M; Mackie GA; Schimmel P
    Science; 1984 Dec; 226(4680):1315-7. PubMed ID: 6390679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The separation of subunits of phenylalanyl-tRNA-synthetase from Escherichia coli MRE-600 by means of affinity chromatography in dissociation conditions].
    Zykova NA; Nevinskiĭ GA; Lavrik OI
    Mol Biol (Mosk); 1982; 16(6):1165-72. PubMed ID: 6759920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification of tyrosine-sensitive 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) and tyrosyl-tRNA synthetases on agarose carrying carboxyl-linked tyrosine.
    Gallopo AR; Kotsiopoulos PS; Mohr SC
    Adv Exp Med Biol; 1974; 42(0):157-63. PubMed ID: 4602167
    [No Abstract]   [Full Text] [Related]  

  • 35. [Mechanism of aminoacyl-tRNA formation (author's transl)].
    Takeda Y
    Tanpakushitsu Kakusan Koso; 1977; 22(2):97-105. PubMed ID: 322218
    [No Abstract]   [Full Text] [Related]  

  • 36. Investigations on the antiproliferative effects of amino acid antagonists targeting for aminoacyl-tRNA synthetases. Part I--The antibacterial effect.
    Laske R; Schönenberger H; Holler E
    Arch Pharm (Weinheim); 1989 Dec; 322(12):847-52. PubMed ID: 2695008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of gram quantities of isoleucyl-tRNA synthetase from an overproducing strain of Escherichia coli and its use for purification of cognate tRNA.
    Kawakami M; Miyazaki M; Yamada H; Mizushima S
    FEBS Lett; 1985 Jun; 185(1):162-4. PubMed ID: 2581811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship.
    Kern D; Potier S; Lapointe J; Boulanger Y
    Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases.
    Nautiyal M; De Graef S; Pang L; Gadakh B; Strelkov SV; Weeks SD; Van Aerschot A
    Eur J Med Chem; 2019 Jul; 173():154-166. PubMed ID: 30995568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arginyl-tRNA synthetase from Escherichia coli, purification by affinity chromatography, properties, and steady-state kinetics.
    Lin SX; Shi JP; Cheng XD; Wang YL
    Biochemistry; 1988 Aug; 27(17):6343-8. PubMed ID: 3064807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.