These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33057032)

  • 1. A spiking and adapting tactile sensor for neuromorphic applications.
    Birkoben T; Winterfeld H; Fichtner S; Petraru A; Kohlstedt H
    Sci Rep; 2020 Oct; 10(1):17260. PubMed ID: 33057032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Digital Hardware System for Spiking Network of Tactile Afferents.
    Salimi-Nezhad N; Ilbeigi E; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2019; 13():1330. PubMed ID: 32009869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor.
    Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2018; 12():322. PubMed ID: 29937707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromorphic Tactile Edge Orientation Classification in an Unsupervised Spiking Neural Network.
    Macdonald FLA; Lepora NF; Conradt J; Ward-Cherrier B
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bioinspired Artificial Gustatory Neuron for a Neuromorphic Based Electronic Tongue.
    Han JK; Park SC; Yu JM; Ahn JH; Choi YK
    Nano Lett; 2022 Jul; 22(13):5244-5251. PubMed ID: 35737524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An artificial spiking afferent nerve based on Mott memristors for neurorobotics.
    Zhang X; Zhuo Y; Luo Q; Wu Z; Midya R; Wang Z; Song W; Wang R; Upadhyay NK; Fang Y; Kiani F; Rao M; Yang Y; Xia Q; Liu Q; Liu M; Yang JJ
    Nat Commun; 2020 Jan; 11(1):51. PubMed ID: 31896758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks.
    Lee WW; Kukreja SL; Thakor NV
    Front Neurosci; 2017; 11():5. PubMed ID: 28197065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Olfactory Neuron for an In-Sensor Neuromorphic Nose.
    Han JK; Kang M; Jeong J; Cho I; Yu JM; Yoon KJ; Park I; Choi YK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2106017. PubMed ID: 35426489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis.
    Lee J; Kim S; Park S; Lee J; Hwang W; Cho SW; Lee K; Kim SM; Seong TY; Park C; Lee S; Yi H
    Adv Mater; 2022 Jun; 34(24):e2201608. PubMed ID: 35436369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Powered Artificial Mechanoreceptor Based on Triboelectrification for a Neuromorphic Tactile System.
    Han JK; Tcho IW; Jeon SB; Yu JM; Kim WG; Choi YK
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105076. PubMed ID: 35032113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boost event-driven tactile learning with location spiking neurons.
    Kang P; Banerjee S; Chopp H; Katsaggelos A; Cossairt O
    Front Neurosci; 2023; 17():1127537. PubMed ID: 37152590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic Processing of Pressure Signal Using Integrated Sensor-Synaptic Device Capable of Selective and Reversible Short- and Long-Term Plasticity Operation.
    Kim DW; Yang JC; Lee S; Park S
    ACS Appl Mater Interfaces; 2020 May; 12(20):23207-23216. PubMed ID: 32342684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Photoresponsive Single Transistor Neuron for a Neuromorphic Visual System.
    Han JK; Geum DM; Lee MW; Yu JM; Kim SK; Kim S; Choi YK
    Nano Lett; 2020 Dec; 20(12):8781-8788. PubMed ID: 33238098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic Active Pixel Image Sensor Array for Visual Memory.
    Hong S; Cho H; Kang BH; Park K; Akinwande D; Kim HJ; Kim S
    ACS Nano; 2021 Sep; 15(9):15362-15370. PubMed ID: 34463475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration.
    Han JK; Lee JW; Kim Y; Kim YB; Yun SY; Lee SW; Yu JM; Lee KJ; Myung H; Choi YK
    Adv Sci (Weinh); 2023 Oct; 10(30):e2302380. PubMed ID: 37712147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bio-inspired visuotactile neuron for multisensory integration.
    Sadaf MUK; Sakib NU; Pannone A; Ravichandran H; Das S
    Nat Commun; 2023 Sep; 14(1):5729. PubMed ID: 37714853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.