These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33057032)

  • 21. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificially Intelligent Tactile Ferroelectric Skin.
    Lee K; Jang S; Kim KL; Koo M; Park C; Lee S; Lee J; Wang G; Park C
    Adv Sci (Weinh); 2020 Nov; 7(22):2001662. PubMed ID: 33240753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling.
    Dorzhigulov A; Saxena V
    Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermittent Failure of Spike Propagation in Primary Afferent Neurons during Tactile Stimulation.
    Al-Basha D; Prescott SA
    J Neurosci; 2019 Dec; 39(50):9927-9939. PubMed ID: 31672792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene Based Low Voltage Field Effect Transistor Coupled with Biodegradable Piezoelectric Material Based Dynamic Pressure Sensor.
    Yogeswaran N; Hosseini ES; Dahiya R
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54035-54040. PubMed ID: 33205956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Leaky Integrate-and-Fire Sensory Neuron for In-Sensor Computing Neuromorphic Perception at the Edge.
    Yuan Y; Gao R; Wu Q; Fang S; Bu X; Cui Y; Han C; Hu L; Li X; Wang X; Geng L; Liu W
    ACS Sens; 2023 Jul; 8(7):2646-2655. PubMed ID: 37232162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application.
    Ramadoss TS; Ishii Y; Chinnappan A; Ang MH; Ramakrishna S
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-Gated MoS
    Bao L; Zhu J; Yu Z; Jia R; Cai Q; Wang Z; Xu L; Wu Y; Yang Y; Cai Y; Huang R
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41482-41489. PubMed ID: 31597432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuromorphic Artificial Touch for Categorization of Naturalistic Textures.
    Rongala UB; Mazzoni A; Oddo CM
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):819-829. PubMed ID: 26372658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
    Jimenez-Fernandez A; Jimenez-Moreno G; Linares-Barranco A; Dominguez-Morales MJ; Paz-Vicente R; Civit-Balcells A
    Sensors (Basel); 2012; 12(4):3831-3856. PubMed ID: 22666004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ED-BioRob: A Neuromorphic Robotic Arm With FPGA-Based Infrastructure for Bio-Inspired Spiking Motor Controllers.
    Linares-Barranco A; Perez-Peña F; Jimenez-Fernandez A; Chicca E
    Front Neurorobot; 2020; 14():590163. PubMed ID: 33328951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing.
    Muñoz-Martin I; Bianchi S; Hashemkhani S; Pedretti G; Melnic O; Ielmini D
    Front Neurosci; 2021; 15():709053. PubMed ID: 34489628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible Unipolar IGZO Transistor-Based Integrate and Fire Neurons for Spiking Neuromorphic Applications.
    Lebanov A; Lopez MV; De Roose F; Papadopoulos NP; Indiveri G; Rubino A; Payvand M; Smout S; Willegems M; Catthoor F; Genoe J; Heremans P; Myny K
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):200-214. PubMed ID: 37782619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.