BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33057035)

  • 1. Statistical models for identifying frequent hitters in high throughput screening.
    Goodwin S; Shahtahmassebi G; Hanley QS
    Sci Rep; 2020 Oct; 10(1):17200. PubMed ID: 33057035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens.
    Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; Tetko IV; Gul S; Hadian K
    J Biomol Screen; 2014 Jun; 19(5):715-26. PubMed ID: 24371213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Accurate Filters to Flag Frequent Hitters in AlphaScreen Assays by Suggesting their Mechanism.
    Ghosh D; Koch U; Hadian K; Sattler M; Tetko IV
    Mol Inform; 2022 Mar; 41(3):e2100151. PubMed ID: 34676998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the biological promiscuity of high-throughput screening hits through DFT calculations.
    Curpăn R; Avram S; Vianello R; Bologa C
    Bioorg Med Chem; 2014 Apr; 22(8):2461-8. PubMed ID: 24656802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Compounds That Interfere with High-Throughput Screening Assay Technologies.
    David L; Walsh J; Sturm N; Feierberg I; Nissink JWM; Chen H; Bajorath J; Engkvist O
    ChemMedChem; 2019 Oct; 14(20):1795-1802. PubMed ID: 31479198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a virtual screening method for identification of "frequent hitters" in compound libraries.
    Roche O; Schneider P; Zuegge J; Guba W; Kansy M; Alanine A; Bleicher K; Danel F; Gutknecht EM; Rogers-Evans M; Neidhart W; Stalder H; Dillon M; Sjögren E; Fotouhi N; Gillespie P; Goodnow R; Harris W; Jones P; Taniguchi M; Tsujii S; von der Saal W; Zimmermann G; Schneider G
    J Med Chem; 2002 Jan; 45(1):137-42. PubMed ID: 11754585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promiscuous 2-aminothiazoles (PrATs): a frequent hitting scaffold.
    Devine SM; Mulcair MD; Debono CO; Leung EW; Nissink JW; Lim SS; Chandrashekaran IR; Vazirani M; Mohanty B; Simpson JS; Baell JB; Scammells PJ; Norton RS; Scanlon MJ
    J Med Chem; 2015 Feb; 58(3):1205-14. PubMed ID: 25559643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HTS promiscuity analyses for accelerating decision making.
    Böcker A; Bonneau PR; Edwards PJ
    J Biomol Screen; 2011 Aug; 16(7):765-74. PubMed ID: 21680863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of frequent-hitter behavior based on historical high-throughput screening data.
    M Nissink JW; Blackburn S
    Future Med Chem; 2014 Jun; 6(10):1113-26. PubMed ID: 25078133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reliable computational workflow for the selection of optimal screening libraries.
    Gilad Y; Nadassy K; Senderowitz H
    J Cheminform; 2015; 7():61. PubMed ID: 26692904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Distribution of Standard Deviations Applied to High Throughput Screening.
    Hanley QS
    Sci Rep; 2019 Feb; 9(1):1268. PubMed ID: 30718587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.
    Brenke JK; Salmina ES; Ringelstetter L; Dornauer S; Kuzikov M; Rothenaigner I; Schorpp K; Giehler F; Gopalakrishnan J; Kieser A; Gul S; Tetko IV; Hadian K
    J Biomol Screen; 2016 Jul; 21(6):596-607. PubMed ID: 27044684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.
    Baell JB; Holloway GA
    J Med Chem; 2010 Apr; 53(7):2719-40. PubMed ID: 20131845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing HTS performance using BioAssay Ontology: screening and analysis of a bacterial phospho-N-acetylmuramoyl-pentapeptide translocase campaign.
    Moberg A; Zander Balderud L; Hansson E; Boyd H
    Assay Drug Dev Technol; 2014; 12(9-10):506-13. PubMed ID: 25415593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.