BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 33057349)

  • 1. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks.
    Langerak P; Mejia-Ramirez E; Limbo O; Russell P
    PLoS Genet; 2011 Sep; 7(9):e1002271. PubMed ID: 21931565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair.
    Sugawara N; Ira G; Haber JE
    Mol Cell Biol; 2000 Jul; 20(14):5300-9. PubMed ID: 10866686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad51 protein controls Rad52-mediated DNA annealing.
    Wu Y; Kantake N; Sugiyama T; Kowalczykowski SC
    J Biol Chem; 2008 May; 283(21):14883-92. PubMed ID: 18337252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.
    Signon L; Malkova A; Naylor ML; Klein H; Haber JE
    Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.
    Lewis LK; Westmoreland JW; Resnick MA
    Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes.
    Dong Z; Fasullo M
    Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break.
    Ferrari M; Dibitetto D; De Gregorio G; Eapen VV; Rawal CC; Lazzaro F; Tsabar M; Marini F; Haber JE; Pellicioli A
    PLoS Genet; 2015 Jan; 11(1):e1004928. PubMed ID: 25569305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ; Nickoloff JA
    Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins.
    Ghodke I; Muniyappa K
    J Biol Chem; 2013 Apr; 288(16):11273-86. PubMed ID: 23443654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rad52 and Rad59 exhibit both overlapping and distinct functions.
    Feng Q; Düring L; de Mayolo AA; Lettier G; Lisby M; Erdeniz N; Mortensen UH; Rothstein R
    DNA Repair (Amst); 2007 Jan; 6(1):27-37. PubMed ID: 16987715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-strand template repair: key insights to increase the efficiency of gene editing.
    Gallagher DN; Haber JE
    Curr Genet; 2021 Oct; 67(5):747-753. PubMed ID: 33881574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing.
    Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA
    Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates.
    Anand R; Beach A; Li K; Haber J
    Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase.
    Seong C; Colavito S; Kwon Y; Sung P; Krejci L
    J Biol Chem; 2009 Sep; 284(36):24363-71. PubMed ID: 19605344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps.
    Maloisel L; Ma E; Phipps J; Deshayes A; Mattarocci S; Marcand S; Dubrana K; Coïc E
    PLoS Genet; 2023 Feb; 19(2):e1010639. PubMed ID: 36749784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.