These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 33057349)
1. A Rad51-independent pathway promotes single-strand template repair in gene editing. Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Lee K; Lee SE Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964 [TBL] [Abstract][Full Text] [Related]
3. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. Langerak P; Mejia-Ramirez E; Limbo O; Russell P PLoS Genet; 2011 Sep; 7(9):e1002271. PubMed ID: 21931565 [TBL] [Abstract][Full Text] [Related]
4. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Sugawara N; Ira G; Haber JE Mol Cell Biol; 2000 Jul; 20(14):5300-9. PubMed ID: 10866686 [TBL] [Abstract][Full Text] [Related]
6. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Signon L; Malkova A; Naylor ML; Klein H; Haber JE Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940 [TBL] [Abstract][Full Text] [Related]
7. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Lewis LK; Westmoreland JW; Resnick MA Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580 [TBL] [Abstract][Full Text] [Related]
8. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Dong Z; Fasullo M Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307 [TBL] [Abstract][Full Text] [Related]
9. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Moriel-Carretero M; Aguilera A Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372 [TBL] [Abstract][Full Text] [Related]
10. Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. Ferrari M; Dibitetto D; De Gregorio G; Eapen VV; Rawal CC; Lazzaro F; Tsabar M; Marini F; Haber JE; Pellicioli A PLoS Genet; 2015 Jan; 11(1):e1004928. PubMed ID: 25569305 [TBL] [Abstract][Full Text] [Related]
11. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Pohl TJ; Nickoloff JA Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855 [TBL] [Abstract][Full Text] [Related]
12. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. Ghodke I; Muniyappa K J Biol Chem; 2013 Apr; 288(16):11273-86. PubMed ID: 23443654 [TBL] [Abstract][Full Text] [Related]
13. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. Jasin M; Haber JE DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202 [TBL] [Abstract][Full Text] [Related]
14. Rad52 and Rad59 exhibit both overlapping and distinct functions. Feng Q; Düring L; de Mayolo AA; Lettier G; Lisby M; Erdeniz N; Mortensen UH; Rothstein R DNA Repair (Amst); 2007 Jan; 6(1):27-37. PubMed ID: 16987715 [TBL] [Abstract][Full Text] [Related]
15. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair. Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639 [TBL] [Abstract][Full Text] [Related]
16. Single-strand template repair: key insights to increase the efficiency of gene editing. Gallagher DN; Haber JE Curr Genet; 2021 Oct; 67(5):747-753. PubMed ID: 33881574 [TBL] [Abstract][Full Text] [Related]
17. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537 [TBL] [Abstract][Full Text] [Related]
18. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Anand R; Beach A; Li K; Haber J Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. Seong C; Colavito S; Kwon Y; Sung P; Krejci L J Biol Chem; 2009 Sep; 284(36):24363-71. PubMed ID: 19605344 [TBL] [Abstract][Full Text] [Related]
20. Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps. Maloisel L; Ma E; Phipps J; Deshayes A; Mattarocci S; Marcand S; Dubrana K; Coïc E PLoS Genet; 2023 Feb; 19(2):e1010639. PubMed ID: 36749784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]