These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33057360)

  • 41. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein.
    Tang L; Zeng Y; Du H; Gong M; Peng J; Zhang B; Lei M; Zhao F; Wang W; Li X; Liu J
    Mol Genet Genomics; 2017 Jun; 292(3):525-533. PubMed ID: 28251317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retinoic acid-induced inner ear teratogenesis caused by defective Fgf3/Fgf10-dependent Dlx5 signaling.
    Liu W; Levi G; Shanske A; Frenz DA
    Birth Defects Res B Dev Reprod Toxicol; 2008 Apr; 83(2):134-44. PubMed ID: 18412219
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FGFR2 signaling in normal and limbless chick limb buds.
    Lizarraga G; Ferrari D; Kalinowski M; Ohuchi H; Noji S; Kosher RA; Dealy CN
    Dev Genet; 1999; 25(4):331-8. PubMed ID: 10570465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.
    Al Alam D; Danopoulos S; Schall K; Sala FG; Almohazey D; Fernandez GE; Georgia S; Frey MR; Ford HR; Grikscheit T; Bellusci S
    Am J Physiol Gastrointest Liver Physiol; 2015 Apr; 308(8):G678-90. PubMed ID: 25721301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Colonic atresia without mesenteric vascular occlusion. The role of the fibroblast growth factor 10 signaling pathway.
    Fairbanks TJ; Kanard RC; Del Moral PM; Sala FG; De Langhe SP; Lopez CA; Veltmaat JM; Warburton D; Anderson KD; Bellusci S; Burns RC
    J Pediatr Surg; 2005 Feb; 40(2):390-6. PubMed ID: 15750935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative Trait Locus Mapping of Macrophage Cholesterol Metabolism and CRISPR/Cas9 Editing Implicate an ACAT1 Truncation as a Causal Modifier Variant.
    Hai Q; Ritchey B; Robinet P; Alzayed AM; Brubaker G; Zhang J; Smith JD
    Arterioscler Thromb Vasc Biol; 2018 Jan; 38(1):83-91. PubMed ID: 29097366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient genome editing of differentiated renal epithelial cells.
    Hofherr A; Busch T; Huber N; Nold A; Bohn A; Viau A; Bienaimé F; Kuehn EW; Arnold SJ; Köttgen M
    Pflugers Arch; 2017 Feb; 469(2):303-311. PubMed ID: 27987038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation†.
    Miao D; Giassetti MI; Ciccarelli M; Lopez-Biladeau B; Oatley JM
    Biol Reprod; 2019 Jul; 101(1):177-187. PubMed ID: 31095680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of Fgf10 gene expression in murine mesenchymal cells.
    Jean JC; Lü J; Joyce-Brady M; Cardoso WV
    J Cell Biochem; 2008 Apr; 103(6):1886-94. PubMed ID: 18022820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of fibroblast growth factor 10 (Fgf10) in adipogenesis in vivo.
    Asaki T; Konishi M; Miyake A; Kato S; Tomizawa M; Itoh N
    Mol Cell Endocrinol; 2004 Apr; 218(1-2):119-28. PubMed ID: 15130516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correction of a pathogenic gene mutation in human embryos.
    Ma H; Marti-Gutierrez N; Park SW; Wu J; Lee Y; Suzuki K; Koski A; Ji D; Hayama T; Ahmed R; Darby H; Van Dyken C; Li Y; Kang E; Park AR; Kim D; Kim ST; Gong J; Gu Y; Xu X; Battaglia D; Krieg SA; Lee DM; Wu DH; Wolf DP; Heitner SB; Belmonte JCI; Amato P; Kim JS; Kaul S; Mitalipov S
    Nature; 2017 Aug; 548(7668):413-419. PubMed ID: 28783728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.