These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33057496)

  • 1. Hydrophosphination using [GeCl{N(SiMe
    Barrett AN; Sanderson HJ; Mahon MF; Webster RL
    Chem Commun (Camb); 2020 Nov; 56(88):13623-13626. PubMed ID: 33057496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amido Ca and Yb(II) Complexes Coordinated by Amidine-Amidopyridinate Ligands for Catalytic Intermolecular Olefin Hydrophosphination.
    Lapshin IV; Yurova OS; Basalov IV; Rad'kov VY; Musina EI; Cherkasov AV; Fukin GK; Karasik AA; Trifonov AA
    Inorg Chem; 2018 Mar; 57(5):2942-2952. PubMed ID: 29443529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room temperature hydrophosphination using a simple iron salen pre-catalyst.
    Gallagher KJ; Webster RL
    Chem Commun (Camb); 2014 Oct; 50(81):12109-11. PubMed ID: 25168587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amido Ln(II) Complexes Coordinated by Bi- and Tridentate Amidinate Ligands: Nonconventional Coordination Modes of Amidinate Ligands and Catalytic Activity in Intermolecular Hydrophosphination of Styrenes and Tolane.
    Basalov IV; Yurova OS; Cherkasov AV; Fukin GK; Trifonov AA
    Inorg Chem; 2016 Feb; 55(3):1236-44. PubMed ID: 26751850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markovnikov versus anti-Markovnikov Hydrophosphination: Divergent Reactivity Using an Iron(II) β-Diketiminate Pre-Catalyst.
    King AK; Gallagher KJ; Mahon MF; Webster RL
    Chemistry; 2017 Jul; 23(38):9039-9043. PubMed ID: 28544315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in Catalytic Hydrophosphination.
    Bange CA; Waterman R
    Chemistry; 2016 Aug; 22(36):12598-605. PubMed ID: 27405918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent heteroleptic ytterbium complexes--effective catalysts for intermolecular styrene hydrophosphination and hydroamination.
    Basalov IV; Roşca SC; Lyubov DM; Selikhov AN; Fukin GK; Sarazin Y; Carpentier JF; Trifonov AA
    Inorg Chem; 2014 Feb; 53(3):1654-61. PubMed ID: 24422473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Aluminate-Catalyzed Hydrophosphination Applications.
    Pollard VA; Young A; McLellan R; Kennedy AR; Tuttle T; Mulvey RE
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12291-12296. PubMed ID: 31260154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteroleptic alkyl and amide iminoanilide alkaline earth and divalent rare earth complexes for the catalysis of hydrophosphination and (cyclo)hydroamination reactions.
    Liu B; Roisnel T; Carpentier JF; Sarazin Y
    Chemistry; 2013 Sep; 19(40):13445-62. PubMed ID: 23955798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottleable NiCl
    Hashimoto T; Ishimaru T; Shiota K; Yamaguchi Y
    Chem Commun (Camb); 2020 Oct; 56(78):11701-11704. PubMed ID: 33000807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rare-earth silylamide-catalyzed selective dimerization of terminal alkynes and subsequent hydrophosphination in one pot.
    Komeyama K; Kawabata T; Takehira K; Takaki K
    J Org Chem; 2005 Sep; 70(18):7260-6. PubMed ID: 16122246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic hydrophosphination of styrenes.
    Shulyupin MO; Kazankova MA; Beletskaya IP
    Org Lett; 2002 Mar; 4(5):761-3. PubMed ID: 11869121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular hydrophosphination of alkynes and related carbon[bond]carbon multiple bonds catalyzed by organoytterbiums.
    Takaki K; Koshoji G; Komeyama K; Takeda M; Shishido T; Kitani A; Takehira K
    J Org Chem; 2003 Aug; 68(17):6554-65. PubMed ID: 12919015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis.
    Wang L; Roşca SC; Poirier V; Sinbandhit S; Dorcet V; Roisnel T; Carpentier JF; Sarazin Y
    Dalton Trans; 2014 Mar; 43(11):4268-86. PubMed ID: 23969845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-Catalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity.
    Zuo Z; Yang J; Huang Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10839-43. PubMed ID: 27479796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AgSbF
    Mamidala R; Pandey VK; Rit A
    Chem Commun (Camb); 2019 Jan; 55(7):989-992. PubMed ID: 30608078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-Catalyzed, Markovnikov-Selective Hydroboration of Styrenes.
    Chen X; Cheng Z; Lu Z
    Org Lett; 2017 Mar; 19(5):969-971. PubMed ID: 28221805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zintl Ions and Phases Promote the Catalytic Hydrophosphination of Alkynes, Alkenes, and Imines.
    Réant BLL; Mehta M
    Organometallics; 2024 Feb; 43(3):395-401. PubMed ID: 38362486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unsaturated amido-substituted six-vertex germanium cluster and its reactions with alkenes and alkynes.
    Helmer J; Hepp A; Lips F
    Dalton Trans; 2020 Sep; 49(34):11843-11850. PubMed ID: 32869780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines.
    Bissessar D; Egly J; Achard T; Steffanut P; Bellemin-Laponnaz S
    RSC Adv; 2019 Aug; 9(47):27250-27256. PubMed ID: 35529201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.