BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 33058207)

  • 1. REPAIRx, a specific yet highly efficient programmable A > I RNA base editor.
    Liu Y; Mao S; Huang S; Li Y; Chen Y; Di M; Huang X; Lv J; Wang X; Ge J; Shen S; Zhang X; Liu D; Huang X; Chi T
    EMBO J; 2020 Nov; 39(22):e104748. PubMed ID: 33058207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cytosine deaminase for programmable single-base RNA editing.
    Abudayyeh OO; Gootenberg JS; Franklin B; Koob J; Kellner MJ; Ladha A; Joung J; Kirchgatterer P; Cox DBT; Zhang F
    Science; 2019 Jul; 365(6451):382-386. PubMed ID: 31296651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing.
    Li G; Wang Y; Li X; Wang Y; Huang X; Gao J; Hu X
    Cell Commun Signal; 2021 Aug; 19(1):84. PubMed ID: 34380502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S.
    Latifi N; Mack AM; Tellioglu I; Di Giorgio S; Stafforst T
    Nucleic Acids Res; 2023 Aug; 51(15):e84. PubMed ID: 37462074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive interrogation of the ADAR2 deaminase domain for engineering enhanced RNA editing activity and specificity.
    Katrekar D; Xiang Y; Palmer N; Saha A; Meluzzi D; Mali P
    Elife; 2022 Jan; 11():. PubMed ID: 35044296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable C-to-U RNA editing using the human APOBEC3A deaminase.
    Huang X; Lv J; Li Y; Mao S; Li Z; Jing Z; Sun Y; Zhang X; Shen S; Wang X; Di M; Ge J; Huang X; Zuo E; Chi T
    EMBO J; 2020 Nov; 39(22):e104741. PubMed ID: 33058229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity.
    Li J; Yu W; Huang S; Wu S; Li L; Zhou J; Cao Y; Huang X; Qiao Y
    Nat Commun; 2021 Apr; 12(1):2287. PubMed ID: 33863894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing.
    Stroppel AS; Latifi N; Hanswillemenke A; Tasakis RN; Papavasiliou FN; Stafforst T
    Nucleic Acids Res; 2021 Sep; 49(16):e95. PubMed ID: 34197596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations.
    Wang L; Xue W; Zhang H; Gao R; Qiu H; Wei J; Zhou L; Lei YN; Wu X; Li X; Liu C; Wu J; Chen Q; Ma H; Huang X; Cai C; Zhang Y; Yang B; Yin H; Yang L; Chen J
    Nat Cell Biol; 2021 May; 23(5):552-563. PubMed ID: 33972728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and minimization of cellular RNA editing by DNA adenine base editors.
    Rees HA; Wilson C; Doman JL; Liu DR
    Sci Adv; 2019 May; 5(5):eaax5717. PubMed ID: 31086823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA editing and alternative splicing: the importance of co-transcriptional coordination.
    Laurencikiene J; Källman AM; Fong N; Bentley DL; Ohman M
    EMBO Rep; 2006 Mar; 7(3):303-7. PubMed ID: 16440002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.
    Richter MF; Zhao KT; Eton E; Lapinaite A; Newby GA; Thuronyi BW; Wilson C; Koblan LW; Zeng J; Bauer DE; Doudna JA; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):883-891. PubMed ID: 32433547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Activity of Adenosine Deaminase Acting on RNA (ADARs) Isoforms for Correction of Genetic Code in Gene Therapy.
    Azad MTA; Qulsum U; Tsukahara T
    Curr Gene Ther; 2019; 19(1):31-39. PubMed ID: 30426900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bump-Hole Approach for Directed RNA Editing.
    Monteleone LR; Matthews MM; Palumbo CM; Thomas JM; Zheng Y; Chiang Y; Fisher AJ; Beal PA
    Cell Chem Biol; 2019 Feb; 26(2):269-277.e5. PubMed ID: 30581135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing.
    Nguyen Tran MT; Mohd Khalid MKN; Wang Q; Walker JKR; Lidgerwood GE; Dilworth KL; Lisowski L; Pébay A; Hewitt AW
    Nat Commun; 2020 Sep; 11(1):4871. PubMed ID: 32978399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities.
    Lyu P; Lu Z; Cho SI; Yadav M; Yoo KW; Atala A; Kim JS; Lu B
    CRISPR J; 2021 Feb; 4(1):69-81. PubMed ID: 33616436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA editing: Expanding the potential of RNA therapeutics.
    Booth BJ; Nourreddine S; Katrekar D; Savva Y; Bose D; Long TJ; Huss DJ; Mali P
    Mol Ther; 2023 Jun; 31(6):1533-1549. PubMed ID: 36620962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA.
    Villiger L; Rothgangl T; Witzigmann D; Oka R; Lin PJC; Qi W; Janjuha S; Berk C; Ringnalda F; Beattie MB; Stoffel M; Thöny B; Hall J; Rehrauer H; van Boxtel R; Tam YK; Schwank G
    Nat Biomed Eng; 2021 Feb; 5(2):179-189. PubMed ID: 33495639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.