BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33058213)

  • 1. Seasonal and diurnal trends in progressive isotope enrichment along needles in two pine species.
    Kannenberg SA; Fiorella RP; Anderegg WRL; Monson RK; Ehleringer JR
    Plant Cell Environ; 2021 Jan; 44(1):143-155. PubMed ID: 33058213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measured and modeled variations in piñon pine leaf water isotopic enrichment across a summer moisture gradient.
    Pendall E; Williams DG; Leavitt SW
    Oecologia; 2005 Oct; 145(4):605-18. PubMed ID: 16012819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf water
    Bögelein R; Thomas FM; Kahmen A
    Plant Cell Environ; 2017 Jul; 40(7):1086-1103. PubMed ID: 28042668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observed relationships between leaf H218O Péclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations.
    Loucos KE; Simonin KA; Song X; Barbour MM
    Tree Physiol; 2015 Jan; 35(1):16-26. PubMed ID: 25576755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enigma of effective path length for (18) O enrichment in leaf water of conifers.
    Roden J; Kahmen A; Buchmann N; Siegwolf R
    Plant Cell Environ; 2015 Dec; 38(12):2551-65. PubMed ID: 26037826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.
    Song X; Barbour MM; Farquhar GD; Vann DR; Helliker BR
    Plant Cell Environ; 2013 Jul; 36(7):1338-51. PubMed ID: 23305086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings.
    Roden JS; Farquhar GD
    Tree Physiol; 2012 Apr; 32(4):490-503. PubMed ID: 22440882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous isotope effects decouple conifer leaf and branch sugar δ
    Fiorella RP; Kannenberg SA; Anderegg WRL; Monson RK; Ehleringer JR
    Oecologia; 2022 Feb; 198(2):357-370. PubMed ID: 35107645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen isotope composition of CAM and C3 Clusia species: non-steady-state dynamics control leaf water 18O enrichment in succulent leaves.
    Cernusak LA; Mejia-Chang M; Winter K; Griffiths H
    Plant Cell Environ; 2008 Nov; 31(11):1644-62. PubMed ID: 18684241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf vein fraction influences the Péclet effect and
    Holloway-Phillips M; Cernusak LA; Barbour M; Song X; Cheesman A; Munksgaard N; Stuart-Williams H; Farquhar GD
    Plant Cell Environ; 2016 Nov; 39(11):2414-2427. PubMed ID: 27391079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.
    Ogée J; Cuntz M; Peylin P; Bariac T
    Plant Cell Environ; 2007 Apr; 30(4):367-87. PubMed ID: 17324225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?
    Rosado BH; De Mattos EA; Sternberg Lda S
    An Acad Bras Cienc; 2013 Sep; 85(3):1035-46. PubMed ID: 24068091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific water-use strategies of mountain pine and larch to cope with recent climate change.
    Churakova Sidorova OV; Saurer M; Bryukhanova MV; Siegwolf RT; Bigler C
    Tree Physiol; 2016 Aug; 36(8):942-53. PubMed ID: 27468738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree-ring stable isotopes.
    Szejner P; Wright WE; Belmecheri S; Meko D; Leavitt SW; Ehleringer JR; Monson RK
    Glob Chang Biol; 2018 Nov; 24(11):5332-5347. PubMed ID: 29999573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton.
    Song X; Loucos KE; Simonin KA; Farquhar GD; Barbour MM
    New Phytol; 2015 Apr; 206(2):637-46. PubMed ID: 25643590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation.
    Lai CT; Ometto JP; Berry JA; Martinelli LA; Domingues TF; Ehleringer JR
    Oecologia; 2008 Aug; 157(2):197-210. PubMed ID: 18543002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.
    Moreaux V; Lamaud E; Bosc A; Bonnefond JM; Medlyn BE; Loustau D
    Tree Physiol; 2011 Sep; 31(9):903-21. PubMed ID: 21724584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.
    Moreno-Gutiérrez C; Barberá GG; Nicolás E; DE Luis M; Castillo VM; Martínez-Fernández F; Querejeta JI
    Plant Cell Environ; 2011 Jun; 34(6):1009-1019. PubMed ID: 21388417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying drivers of leaf water and cellulose stable isotope enrichment in Eucalyptus in northern Australia.
    Munksgaard NC; Cheesman AW; English NB; Zwart C; Kahmen A; Cernusak LA
    Oecologia; 2017 Jan; 183(1):31-43. PubMed ID: 27798741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.