These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33058224)

  • 1. Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features.
    Arefan D; Chai R; Sun M; Zuley ML; Wu S
    Med Phys; 2020 Dec; 47(12):6334-6342. PubMed ID: 33058224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences.
    Chai R; Ma H; Xu M; Arefan D; Cui X; Liu Y; Zhang L; Wu S; Xu K
    J Magn Reson Imaging; 2019 Oct; 50(4):1125-1132. PubMed ID: 30848041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.
    Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C
    J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.
    Yu Y; Chen R; Yi J; Huang K; Yu X; Zhang J; Song C
    Breast; 2024 Oct; 77():103786. PubMed ID: 39137488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography.
    Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G
    Eur Radiol; 2024 Sep; 34(9):6121-6131. PubMed ID: 38337068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomic Signature Based on Dynamic Contrast-Enhanced MRI for Evaluation of Axillary Lymph Node Metastasis in Breast Cancer.
    Tang Y; Chen L; Qiao Y; Li W; Deng R; Liang M
    Comput Math Methods Med; 2022; 2022():1507125. PubMed ID: 36035302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammography-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer.
    Tan H; Wu Y; Bao F; Zhou J; Wan J; Tian J; Lin Y; Wang M
    Br J Radiol; 2020 Jul; 93(1111):20191019. PubMed ID: 32401540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients.
    Liu S; Du S; Gao S; Teng Y; Jin F; Zhang L
    BMC Cancer; 2023 Jan; 23(1):15. PubMed ID: 36604679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.
    Zhu Y; Ma Y; Zhai Z; Liu A; Wang Y; Zhang Y; Li H; Zhao M; Han P; Yin L; He N; Wu Y; Sechopoulos I; Ye Z; Caballo M
    Eur Radiol; 2024 Apr; 34(4):2576-2589. PubMed ID: 37782338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Carcinoma Using Radiomics Features Based on the Fat-Suppressed T2 Sequence.
    Tan H; Gan F; Wu Y; Zhou J; Tian J; Lin Y; Wang M
    Acad Radiol; 2020 Sep; 27(9):1217-1225. PubMed ID: 31879160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer.
    Haraguchi T; Kobayashi Y; Hirahara D; Kobayashi T; Takaya E; Nagai MT; Tomita H; Okamoto J; Kanemaki Y; Tsugawa K
    J Xray Sci Technol; 2023; 31(3):627-640. PubMed ID: 37038802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.
    Qu L; Mei X; Yi Z; Zou Q; Zhou Q; Zhang D; Zhou M; Pei L; Long Q; Meng J; Zhang H; Chen Q; Yi W
    Int J Surg; 2024 Sep; 110(9):5363-5373. PubMed ID: 38847776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomic features of axillary lymph nodes based on pharmacokinetic modeling DCE-MRI allow preoperative diagnosis of their metastatic status in breast cancer.
    Luo HB; Liu YY; Wang CH; Qing HM; Wang M; Zhang X; Chen XY; Xu GH; Zhou P; Ren J
    PLoS One; 2021; 16(3):e0247074. PubMed ID: 33647031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer.
    Song BI
    Breast Cancer; 2021 May; 28(3):664-671. PubMed ID: 33454875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer.
    Tang Y; Che X; Wang W; Su S; Nie Y; Yang C
    Med Phys; 2022 Dec; 49(12):7555-7566. PubMed ID: 35869750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.