BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33058459)

  • 21. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GSScore: a novel Graphormer-based shell-like scoring method for protein-ligand docking.
    Guo L; Wang J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
    Quiroga R; Villarreal MA
    PLoS One; 2016; 11(5):e0155183. PubMed ID: 27171006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.
    Liu J; Su M; Liu Z; Li J; Li Y; Wang R
    BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity.
    Nguyen NT; Nguyen TH; Pham TNH; Huy NT; Bay MV; Pham MQ; Nam PC; Vu VV; Ngo ST
    J Chem Inf Model; 2020 Jan; 60(1):204-211. PubMed ID: 31887035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.
    Jiang H; Fan M; Wang J; Sarma A; Mohanty S; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2020 Oct; 60(10):4594-4602. PubMed ID: 33100014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting Docking-Based Virtual Screening with Deep Learning.
    Pereira JC; Caffarena ER; Dos Santos CN
    J Chem Inf Model; 2016 Dec; 56(12):2495-2506. PubMed ID: 28024405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement in ADMET Prediction with Multitask Deep Featurization.
    Feinberg EN; Joshi E; Pande VS; Cheng AC
    J Med Chem; 2020 Aug; 63(16):8835-8848. PubMed ID: 32286824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity.
    Zhang H; Liao L; Saravanan KM; Yin P; Wei Y
    PeerJ; 2019; 7():e7362. PubMed ID: 31380152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is Multitask Deep Learning Practical for Pharma?
    Ramsundar B; Liu B; Wu Z; Verras A; Tudor M; Sheridan RP; Pande V
    J Chem Inf Model; 2017 Aug; 57(8):2068-2076. PubMed ID: 28692267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock.
    Masters L; Eagon S; Heying M
    J Mol Graph Model; 2020 May; 96():107532. PubMed ID: 31991303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2.
    Kadukova M; Grudinin S
    J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.