These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33058459)

  • 61. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations.
    Guterres H; Im W
    J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel Consensus Docking Strategy to Improve Ligand Pose Prediction.
    Ren X; Shi YS; Zhang Y; Liu B; Zhang LH; Peng YB; Zeng R
    J Chem Inf Model; 2018 Aug; 58(8):1662-1668. PubMed ID: 30044626
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GNINA 1.0: molecular docking with deep learning.
    McNutt AT; Francoeur P; Aggarwal R; Masuda T; Meli R; Ragoza M; Sunseri J; Koes DR
    J Cheminform; 2021 Jun; 13(1):43. PubMed ID: 34108002
    [TBL] [Abstract][Full Text] [Related]  

  • 67. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina.
    Koebel MR; Schmadeke G; Posner RG; Sirimulla S
    J Cheminform; 2016; 8():27. PubMed ID: 27195023
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.
    Zhang H; Zhang T; Saravanan KM; Liao L; Wu H; Zhang H; Zhang H; Pan Y; Wu X; Wei Y
    Methods; 2022 Sep; 205():247-262. PubMed ID: 35878751
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Incorporating structural similarity into a scoring function to enhance the prediction of binding affinities.
    Ji B; He X; Zhang Y; Zhai J; Man VH; Liu S; Wang J
    J Cheminform; 2021 Feb; 13(1):11. PubMed ID: 33588902
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.
    Xu W; Lucke AJ; Fairlie DP
    J Mol Graph Model; 2015 Apr; 57():76-88. PubMed ID: 25682361
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving classical scoring functions using random forest: The non-additivity of free energy terms' contributions in binding.
    Afifi K; Al-Sadek AF
    Chem Biol Drug Des; 2018 Aug; 92(2):1429-1434. PubMed ID: 29655201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?
    Ramírez D; Caballero J
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29710787
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking.
    Li J; Fu A; Zhang L
    Interdiscip Sci; 2019 Jun; 11(2):320-328. PubMed ID: 30877639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring.
    Sun H; Li Y; Shen M; Tian S; Xu L; Pan P; Guan Y; Hou T
    Phys Chem Chem Phys; 2014 Oct; 16(40):22035-45. PubMed ID: 25205360
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Docking studies on DNA intercalators.
    Gilad Y; Senderowitz H
    J Chem Inf Model; 2014 Jan; 54(1):96-107. PubMed ID: 24303988
    [TBL] [Abstract][Full Text] [Related]  

  • 78. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors.
    Wichapong K; Rohe A; Platzer C; Slynko I; Erdmann F; Schmidt M; Sippl W
    J Chem Inf Model; 2014 Mar; 54(3):881-93. PubMed ID: 24490903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.