BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33058679)

  • 1. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface.
    Zhu H; Yang Q; Liu D; Liu D; Zhang W; Chu Z; Wang X; Yan S; Li Z; Zou Z
    J Phys Chem Lett; 2020 Nov; 11(21):9184-9194. PubMed ID: 33058679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the origin of the high photocatalytic properties of earth-abundant TiO
    Awe OF; Eya HI; Amaral R; Komalla N; Nbelayim P; Dzade NY
    Phys Chem Chem Phys; 2024 Apr; 26(16):12869-12879. PubMed ID: 38625375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface polaron states on single-crystal rutile TiO
    Yang Q; Zhu H; Hou Y; Liu D; Tang H; Liu D; Zhang W; Yan S; Zou Z
    Dalton Trans; 2020 Nov; 49(42):15054-15060. PubMed ID: 33103679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes.
    Liu C; Zuo J; Zhang J; Pei Y; Chen S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3566-3573. PubMed ID: 36594870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi
    Song A; Levine I; van de Krol R; Dittrich T; Berglund SP
    Chem Sci; 2020 Sep; 11(41):11195-11204. PubMed ID: 34094360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation.
    Wang X; Sun W; Tian Y; Dang K; Zhang Q; Shen Z; Zhan S
    Small; 2021 Apr; 17(14):e2100367. PubMed ID: 33690986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO
    He Y; Wang P; Zhu J; Yang Y; Liu Y; Chen M; Cao D; Yan X
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37322-37329. PubMed ID: 31525991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction of lattice-matched CdS-Ag
    Yuan Z; Cao Y; Meng Y; Pan G; Zheng Y; Ni Z; Xia S
    J Hazard Mater; 2023 Sep; 458():131895. PubMed ID: 37356175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction.
    Wang C; Zhang X; Wei Y; Kong L; Chang F; Zheng H; Wu L; Zhi J; Liu Y
    Dalton Trans; 2015 Aug; 44(29):13331-9. PubMed ID: 26131909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Doping Induced by Charge Transfer at the Hetero-Interface to Enhance Photocatalytic Performance.
    Zhang B; Wang D; Cao J; Zhao C; Pan J; Liu D; Liu S; Zeng Z; Chen T; Liu G; Jiao S; Xu Z; Huang Y; Zhao L; Wang J
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12924-12935. PubMed ID: 36854656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO
    Zhu H; Xiao S; Tu W; Yan S; He T; Zhu X; Yao Y; Zhou Y; Zou Z
    J Phys Chem Lett; 2021 Nov; 12(44):10815-10822. PubMed ID: 34726410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO
    Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R
    Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C
    Liu J; Cheng B; Yu J
    Phys Chem Chem Phys; 2016 Nov; 18(45):31175-31183. PubMed ID: 27819105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally Accelerated Surface Polaron Hopping in Photoelectrochemical Water Splitting.
    Du Y; Yan S; Zou Z
    J Phys Chem Lett; 2023 Jan; 14(2):413-419. PubMed ID: 36622299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional Change of Interfacial Electric Field by Carbon Insertion in Heterojunction System TiO
    Kim YH; Lee SY; Umh HN; Song HD; Han JW; Choi JW; Yi J
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15239-15245. PubMed ID: 32150374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shallow Trap State-Induced Efficient Electron Transfer at the Interface of Heterojunction Photocatalysts: The Crucial Role of Vacancy Defects.
    Xue J; Fujitsuka M; Majima T
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40860-40867. PubMed ID: 31578057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect and interface/surface engineering synergistically modulated electron transfer and nonlinear absorption properties in MoX
    Liu Y; Li HY; Cao HX; Zheng XY; Yin Shi B; Yin HT
    Nanoscale; 2024 Jan; 16(4):1865-1879. PubMed ID: 38168696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transformation synthesis of TiO
    Liu C; Yang Y; Li J; Chen S
    Nanotechnology; 2018 Jun; 29(26):265401. PubMed ID: 29638218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.