These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33058679)

  • 21. Rethinking band bending at the P3HT-TiO(2) interface.
    Haring AJ; Ahrenholtz SR; Morris AJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4394-401. PubMed ID: 24571734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SnS
    Lin J; Liu Y; Liu Y; Huang C; Liu W; Mi X; Fan D; Fan F; Lu H; Chen X
    ChemSusChem; 2019 Mar; 12(5):961-967. PubMed ID: 30716210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In
    Yang JS; Wu JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3714-3722. PubMed ID: 29299916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical Vapor-Deposited Monolayer MoS
    Paul KK; Mawlong LPL; Giri PK
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42812-42825. PubMed ID: 30421600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO
    Wu H; Yuan C; Chen R; Wang J; Dong F; Li J; Sun Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43741-43749. PubMed ID: 32867469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding of TiO
    Duan L; Rao S; Wang D; Zhang K; Cao H; Liu Z; Guo Q; Li W; Tao J; Gao Y
    Chemosphere; 2021 Mar; 267():129249. PubMed ID: 33352369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study.
    Dong C; Li X; Zhao W; Jin P; Fan X; Qi J
    Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remarkably efficient charge transfer through a double heterojunction mechanism by a CdS-SnS-SnS
    Liang M; Yu Y; Wang Y; Yu Y
    J Hazard Mater; 2020 Jun; 391():121016. PubMed ID: 32086116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes.
    Kim TL; Choi MJ; Lee TH; Sohn W; Jang HW
    Nano Lett; 2019 Sep; 19(9):5897-5903. PubMed ID: 31095915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of SiC/Si Heterojunction Band Energy and Interface State Characteristics for SiC/Si VDMOS.
    Yang X; Duan B; Yang Y
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends.
    Wang R; Yao Y; Zhang C; Zhang Y; Bin H; Xue L; Zhang ZG; Xie X; Ma H; Wang X; Li Y; Xiao M
    Nat Commun; 2019 Jan; 10(1):398. PubMed ID: 30674887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial Electron Transfer Barrier at Compact TiO2 /CH3 NH3 PbI3 Heterojunction.
    Xing G; Wu B; Chen S; Chua J; Yantara N; Mhaisalkar S; Mathews N; Sum TC
    Small; 2015 Aug; 11(29):3606-13. PubMed ID: 25824264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Heterojunction in Charge Carrier Separation in Coexposed Anatase (001)-(101) Surfaces.
    Di Liberto G; Tosoni S; Pacchioni G
    J Phys Chem Lett; 2019 May; 10(10):2372-2377. PubMed ID: 31018090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data on the effect of improved TiO
    Mahadik MA; Shinde PS; Lee HH; Cho M; Jang JS
    Data Brief; 2018 Apr; 17():807-819. PubMed ID: 29527543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic insights into the photoinduced charge carrier dynamics of BiOBr/CdS nanosheet heterojunctions for photovoltaic application.
    Jia H; Zhang B; He W; Xiang Y; Zheng Z
    Nanoscale; 2017 Mar; 9(9):3180-3187. PubMed ID: 28221382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale TiO
    Xu Z; Hou B; Zhao F; Cai Z; Shi H; Liu Y; Hill CL; Musaev DG; Mecklenburg M; Cronin SB; Lian T
    Nano Lett; 2021 Oct; 21(19):8017-8024. PubMed ID: 34569798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compression Stress-Induced Internal Magnetic Field in Bulky TiO
    Wu B; Lyu Y; Chen W; Zheng J; Zhou H; De Marco R; Tsud N; Prince KC; Kalinovych V; Johannessen B; Jiang SP; Wang S
    JACS Au; 2023 Feb; 3(2):592-602. PubMed ID: 36873698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.