These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33058682)

  • 1. Significant Variability in the Photocatalytic Activity of Natural Titanium-Containing Minerals: Implications for Understanding and Predicting Atmospheric Mineral Dust Photochemistry.
    Abou-Ghanem M; Oliynyk AO; Chen Z; Matchett LC; McGrath DT; Katz MJ; Locock AJ; Styler SA
    Environ Sci Technol; 2020 Nov; 54(21):13509-13516. PubMed ID: 33058682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First X-ray Spectroscopic Observations of Atmospheric Titanium Species: Size Dependence and the Emission Source.
    Sakata K; Takahashi Y; Takano S; Matsuki A; Sakaguchi A; Tanimoto H
    Environ Sci Technol; 2021 Jul; ():. PubMed ID: 34314147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of atmospheric dust: ozone decomposition on illuminated titanium dioxide.
    Nicolas M; Ndour M; Ka O; D'Anna B; George C
    Environ Sci Technol; 2009 Oct; 43(19):7437-42. PubMed ID: 19848158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol.
    Hettiarachchi E; Hurab O; Rubasinghege G
    J Phys Chem A; 2018 Feb; 122(5):1291-1302. PubMed ID: 29336571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous uptake of nitrogen dioxide on Chinese mineral dust.
    Zhou L; Wang W; Hou S; Tong S; Ge M
    J Environ Sci (China); 2015 Dec; 38():110-8. PubMed ID: 26702974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photooxidation of atmospheric alcohols on laboratory proxies for mineral dust.
    Styler SA; Donaldson DJ
    Environ Sci Technol; 2011 Dec; 45(23):10004-12. PubMed ID: 22014274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and Product Formation during the Photooxidation of Butanol on Atmospheric Mineral Dust.
    Ponczek M; George C
    Environ Sci Technol; 2018 May; 52(9):5191-5198. PubMed ID: 29595957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol.
    Chen H; Navea JG; Young MA; Grassian VH
    J Phys Chem A; 2011 Feb; 115(4):490-9. PubMed ID: 21210685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-examining Dust Chemical Aging and Its Impacts on Earth's Climate.
    Gaston CJ
    Acc Chem Res; 2020 May; 53(5):1005-1013. PubMed ID: 32349473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of gaseous 2-bromophenol on clay mineral dust and the potential health effect.
    Wang Y; Peng A; Chen Z; Jin X; Gu C
    Environ Pollut; 2019 Jul; 250():686-694. PubMed ID: 31035151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 10th Anniversary review: applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth's atmosphere.
    Hatch CD; Grassian VH
    J Environ Monit; 2008 Aug; 10(8):919-34. PubMed ID: 18688461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2.
    Liu G; Wang X; Chen Z; Cheng HM; Lu GQ
    J Colloid Interface Sci; 2009 Jan; 329(2):331-8. PubMed ID: 18848707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates.
    Karagulian F; Rossi MJ
    Phys Chem Chem Phys; 2005 Sep; 7(17):3150-62. PubMed ID: 16240026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineral dust photochemistry induces nucleation events in the presence of SO2.
    Dupart Y; King SM; Nekat B; Nowak A; Wiedensohler A; Herrmann H; David G; Thomas B; Miffre A; Rairoux P; D'Anna B; George C
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20842-7. PubMed ID: 23213230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry and photochemistry of mineral dust aerosol.
    Cwiertny DM; Young MA; Grassian VH
    Annu Rev Phys Chem; 2008; 59():27-51. PubMed ID: 18393675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans.
    Stockdale A; Krom MD; Mortimer RJ; Benning LG; Carslaw KS; Herbert RJ; Shi Z; Myriokefalitakis S; Kanakidou M; Nenes A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14639-14644. PubMed ID: 27930294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction.
    Nowak S; Lafon S; Caquineau S; Journet E; Laurent B
    Talanta; 2018 Aug; 186():133-139. PubMed ID: 29784340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Qualitative Study of Airborne Minerals and Associated Organic Compounds in Southeast of Cairo, Egypt.
    Hindy KT; Baghdady AR; M Howari F; Abdelmaksoud AS
    Int J Environ Res Public Health; 2018 Mar; 15(4):. PubMed ID: 29561822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds.
    Kameda T; Azumi E; Fukushima A; Tang N; Matsuki A; Kamiya Y; Toriba A; Hayakawa K
    Sci Rep; 2016 Apr; 6():24427. PubMed ID: 27075250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.
    Tong H; Lakey PSJ; Arangio AM; Socorro J; Kampf CJ; Berkemeier T; Brune WH; Pöschl U; Shiraiwa M
    Faraday Discuss; 2017 Aug; 200():251-270. PubMed ID: 28574563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.