These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 33058767)

  • 41. A neurophotonic device for stimulation and recording of neural microcircuits.
    Wang J; Borton DA; Zhang J; Burwell RD; Nurmikko AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2935-8. PubMed ID: 21095989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MEG source imaging detects optogenetically-induced activity in cortical and subcortical networks.
    Alberto GE; Stapleton-Kotloski JR; Klorig DC; Rogers ER; Constantinidis C; Daunais JB; Godwin DW
    Nat Commun; 2021 Sep; 12(1):5259. PubMed ID: 34489452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics.
    Cardin JA; Crair MC; Higley MJ
    Neuron; 2020 Oct; 108(1):33-43. PubMed ID: 33058764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-cell micro- and nano-photonic technologies.
    Pisano F; Pisanello M; De Vittorio M; Pisanello F
    J Neurosci Methods; 2019 Sep; 325():108355. PubMed ID: 31319100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implantable graded-index fibers for neural-dynamics-resolving brain imaging in awake mice on an air-lifted platform.
    Pochechuev MS; Fedotov IV; Martynov GN; Solotenkov MA; Ivashkina OI; Rogozhnikova OS; Fedotov AB; Anokhin KV; Zheltikov AM
    J Biophotonics; 2022 Sep; 15(9):e202200025. PubMed ID: 35666011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studying Brain Circuit Function with Dynamic Causal Modeling for Optogenetic fMRI.
    Bernal-Casas D; Lee HJ; Weitz AJ; Lee JH
    Neuron; 2017 Feb; 93(3):522-532.e5. PubMed ID: 28132829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-chip microprocessor that communicates directly using light.
    Sun C; Wade MT; Lee Y; Orcutt JS; Alloatti L; Georgas MS; Waterman AS; Shainline JM; Avizienis RR; Lin S; Moss BR; Kumar R; Pavanello F; Atabaki AH; Cook HM; Ou AJ; Leu JC; Chen YH; Asanović K; Ram RJ; Popović MA; Stojanović VM
    Nature; 2015 Dec; 528(7583):534-8. PubMed ID: 26701054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetics meets optical wavefront shaping.
    Shoham S
    Nat Methods; 2010 Oct; 7(10):798-9. PubMed ID: 20885441
    [No Abstract]   [Full Text] [Related]  

  • 51. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimodal fast optical interrogation of neural circuitry.
    Zhang F; Wang LP; Brauner M; Liewald JF; Kay K; Watzke N; Wood PG; Bamberg E; Nagel G; Gottschalk A; Deisseroth K
    Nature; 2007 Apr; 446(7136):633-9. PubMed ID: 17410168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion.
    Han SY; Clarkson J; Piet R; Herbison AE
    Endocrinology; 2018 Nov; 159(11):3822-3833. PubMed ID: 30304401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical neural interfaces.
    Warden MR; Cardin JA; Deisseroth K
    Annu Rev Biomed Eng; 2014 Jul; 16():103-29. PubMed ID: 25014785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emerging technologies toward the integration of multiple functionalities on non-planar implantable neurophotonics probes.
    Mohammadiaria M; Bianco M; Balena A; Andriani MS; Montinaro C; Spagnola B; Pisano F; Pisanello F; De Vittorio M
    Neurophotonics; 2024 Sep; 11(Suppl 1):S11514. PubMed ID: 39132194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vivo Optogenetic Modulation with Simultaneous Neural Detection Using Microelectrode Array Integrated with Optical Fiber.
    Fan P; Song Y; Xu S; Dai Y; Wang Y; Lu B; Xie J; Wang H; Cai X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823521
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca
    Chen Y; Pais-Roldan P; Chen X; Frosz MH; Yu X
    Nat Commun; 2019 Jun; 10(1):2536. PubMed ID: 31182714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrating anatomy and function for zebrafish circuit analysis.
    Arrenberg AB; Driever W
    Front Neural Circuits; 2013; 7():74. PubMed ID: 23630469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wide and Deep Imaging of Neuronal Activities by a Wearable NeuroImager Reveals Premotor Activity in the Whole Motor Cortex.
    Kobayashi T; Islam T; Sato M; Ohkura M; Nakai J; Hayashi Y; Okamoto H
    Sci Rep; 2019 Jun; 9(1):8366. PubMed ID: 31182818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.