These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33058768)

  • 1. Advancing Neuroscience through Wearable Devices.
    Johnson KT; Picard RW
    Neuron; 2020 Oct; 108(1):8-12. PubMed ID: 33058768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effects of electrodermal biofeedback training on seizure control in patients with drug-resistant epilepsy: two case reports.
    Nagai Y; Trimble MR
    Epilepsy Res; 2014 Jan; 108(1):149-52. PubMed ID: 24238895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin conductance biofeedback training in adults with drug-resistant temporal lobe epilepsy and stress-triggered seizures: a proof-of-concept study.
    Micoulaud-Franchi JA; Kotwas I; Lanteaume L; Berthet C; Bastien M; Vion-Dury J; McGonigal A; Bartolomei F
    Epilepsy Behav; 2014 Dec; 41():244-50. PubMed ID: 25461224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors.
    Tonacci A; Billeci L; Burrai E; Sansone F; Conte R
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable.
    S AA; P S; V S; S SK; A S; Akl TJ; P PS; Sivaprakasam M
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):92-100. PubMed ID: 30668508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity.
    Sánchez-Reolid R; Martínez-Rodrigo A; López MT; Fernández-Caballero A
    Int J Neural Syst; 2020 Jul; 30(7):2050031. PubMed ID: 32507059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Innovative, Unobtrusive Approach to Investigate Smartphone Interaction in Nonaddicted Subjects Based on Wearable Sensors: A Pilot Study.
    Tonacci A; Billeci L; Sansone F; Masci A; Pala AP; Domenici C; Conte R
    Medicina (Kaunas); 2019 Feb; 55(2):. PubMed ID: 30720738
    [No Abstract]   [Full Text] [Related]  

  • 9. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications
    Pope GC; Halter RJ
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Channel Wearable Mental Stress State Monitoring System.
    Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands.
    Regalia G; Onorati F; Lai M; Caborni C; Picard RW
    Epilepsy Res; 2019 Jul; 153():79-82. PubMed ID: 30846346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbances in Electrodermal Activity Recordings Due to Different Noises in the Environment.
    Bari DS; Aldosky HYY; Tronstad C; Martinsen ØG
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining Stress and Residual Symptoms in Remitted and Partially Remitted Depression Using a Wearable Electrodermal Activity Device: A Pilot Study.
    Whiston A; Igou ER; Fortune DG; Analog Devices Team ; Semkovska M
    IEEE J Transl Eng Health Med; 2023; 11():96-106. PubMed ID: 36644642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring.
    Kim H; Kwon S; Kwon YT; Yeo WH
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study to compare the effectiveness of GSR biofeedback training and progressive muscle relaxation training in reducing blood pressure and respiratory rate among highly stressed individuals.
    Khanna A; Paul M; Sandhu JS
    Indian J Physiol Pharmacol; 2007; 51(3):296-300. PubMed ID: 18341229
    [No Abstract]   [Full Text] [Related]  

  • 17. Wearable device assessments of antiseizure medication effects on diurnal patterns of electrodermal activity, heart rate, and heart rate variability.
    Halimeh M; Yang Y; Sheehan T; Vieluf S; Jackson M; Loddenkemper T; Meisel C
    Epilepsy Behav; 2022 Apr; 129():108635. PubMed ID: 35278938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device.
    McNaboe RQ; Hossain MB; Kong Y; Chon KH; Posada-Quintero HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6991-6994. PubMed ID: 34892712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomic biofeedback therapy in epilepsy.
    Nagai Y
    Epilepsy Res; 2019 Jul; 153():76-78. PubMed ID: 30819542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased electrodermal activity in patients with epilepsy.
    Horinouchi T; Sakurai K; Munekata N; Kurita T; Takeda Y; Kusumi I
    Epilepsy Behav; 2019 Nov; 100(Pt A):106517. PubMed ID: 31574431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.