These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 33059050)

  • 1. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grouping of MEG gamma oscillations by EEG sleep spindles.
    Ayoub A; Mölle M; Preissl H; Born J
    Neuroimage; 2012 Jan; 59(2):1491-500. PubMed ID: 21893206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording.
    Urakami Y
    J Clin Neurophysiol; 2008 Feb; 25(1):13-24. PubMed ID: 18303556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographical frequency dynamics within EEG and MEG sleep spindles.
    Dehghani N; Cash SS; Halgren E
    Clin Neurophysiol; 2011 Feb; 122(2):229-35. PubMed ID: 20637689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of synchronous EEG spindles from asynchronous MEG spindles.
    Dehghani N; Cash SS; Halgren E
    Hum Brain Mapp; 2011 Dec; 32(12):2217-27. PubMed ID: 21337472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
    Krishnan GP; Rosen BQ; Chen JY; Muller L; Sejnowski TJ; Cash SS; Halgren E; Bazhenov M
    PLoS Comput Biol; 2018 Jun; 14(6):e1006171. PubMed ID: 29949575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity.
    Cowan E; Liu A; Henin S; Kothare S; Devinsky O; Davachi L
    J Neurosci; 2020 Feb; 40(9):1909-1919. PubMed ID: 31959699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory.
    Perrault AA; Khani A; Quairiaux C; Kompotis K; Franken P; Muhlethaler M; Schwartz S; Bayer L
    Curr Biol; 2019 Feb; 29(3):402-411.e3. PubMed ID: 30686735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.
    Mölle M; Bergmann TO; Marshall L; Born J
    Sleep; 2011 Oct; 34(10):1411-21. PubMed ID: 21966073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.
    Dehghani N; Cash SS; Chen CC; Hagler DJ; Huang M; Dale AM; Halgren E
    PLoS One; 2010 Jul; 5(7):e11454. PubMed ID: 20628643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
    Dehghani N; Cash SS; Rossetti AO; Chen CC; Halgren E
    J Neurophysiol; 2010 Jul; 104(1):179-88. PubMed ID: 20427615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study.
    Gumenyuk V; Roth T; Moran JE; Jefferson C; Bowyer SM; Tepley N; Drake CL
    J Sleep Res; 2009 Jun; 18(2):245-53. PubMed ID: 19645968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale structure and individual fingerprints of locally coupled sleep oscillations.
    Cox R; Mylonas DS; Manoach DS; Stickgold R
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30184179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex.
    Takeuchi S; Murai R; Shimazu H; Isomura Y; Mima T; Tsujimoto T
    Sleep; 2016 Sep; 39(9):1719-35. PubMed ID: 27397568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.
    Laventure S; Pinsard B; Lungu O; Carrier J; Fogel S; Benali H; Lina JM; Boutin A; Doyon J
    Sleep; 2018 Sep; 41(9):. PubMed ID: 30137521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep.
    Gonzalez CE; Mak-McCully RA; Rosen BQ; Cash SS; Chauvel PY; Bastuji H; Rey M; Halgren E
    J Neurosci; 2018 Nov; 38(46):9989-10001. PubMed ID: 30242045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.