BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33059063)

  • 1. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium.
    Choi K; Weng ML; Ruhlman TA; Jansen RK
    Mol Phylogenet Evol; 2021 Feb; 155():106986. PubMed ID: 33059063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).
    Weng ML; Ruhlman TA; Gibby M; Jansen RK
    Mol Phylogenet Evol; 2012 Sep; 64(3):654-70. PubMed ID: 22677167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae.
    Parkinson CL; Mower JP; Qiu YL; Shirk AJ; Song K; Young ND; DePamphilis CW; Palmer JD
    BMC Evol Biol; 2005 Dec; 5():73. PubMed ID: 16368004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium.
    Park S; Ruhlman TA; Weng ML; Hajrah NH; Sabir JSM; Jansen RK
    Genome Biol Evol; 2017 Jun; 9(6):1766-1780. PubMed ID: 28854633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genus-Wide Screening Reveals Four Distinct Types of Structural Plastid Genome Organization in Pelargonium (Geraniaceae).
    Röschenbleck J; Wicke S; Weinl S; Kudla J; Müller KF
    Genome Biol Evol; 2017 Jan; 9(1):64-76. PubMed ID: 28172771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades.
    Lee C; Ruhlman TA; Jansen RK
    Mol Phylogenet Evol; 2023 May; 182():107760. PubMed ID: 36921696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.
    Weng ML; Ruhlman TA; Jansen RK
    New Phytol; 2017 Apr; 214(2):842-851. PubMed ID: 27991660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium.
    Grewe F; Zhu A; Mower JP
    Genome Biol Evol; 2016 Oct; 8(10):3193-3201. PubMed ID: 27664178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable presence of the inverted repeat and plastome stability in Erodium.
    Blazier JC; Jansen RK; Mower JP; Govindu M; Zhang J; Weng ML; Ruhlman TA
    Ann Bot; 2016 Jun; 117(7):1209-20. PubMed ID: 27192713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates.
    Zhu A; Guo W; Gupta S; Fan W; Mower JP
    New Phytol; 2016 Mar; 209(4):1747-56. PubMed ID: 26574731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates.
    Weng ML; Blazier JC; Govindu M; Jansen RK
    Mol Biol Evol; 2014 Mar; 31(3):645-59. PubMed ID: 24336877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18424-9. PubMed ID: 19011103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.
    Weng ML; Ruhlman TA; Jansen RK
    Genome Biol Evol; 2016 Jun; 8(6):1824-38. PubMed ID: 27190001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
    Zhang J; Ruhlman TA; Mower JP; Jansen RK
    BMC Plant Biol; 2013 Dec; 13():228. PubMed ID: 24373163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae).
    Park S; An B; Park S
    BMC Plant Biol; 2024 Apr; 24(1):303. PubMed ID: 38644497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.
    Zhang J; Ruhlman TA; Sabir JS; Blazier JC; Weng ML; Park S; Jansen RK
    Genome Biol Evol; 2016 Feb; 8(3):622-34. PubMed ID: 26893456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns.
    Liu S; Wang Z; Wang H; Su Y; Wang T
    Sci Rep; 2020 Jun; 10(1):9394. PubMed ID: 32523061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.