These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 33059212)
1. Effects of climate change on coastal ecosystem food webs: Implications for aquaculture. Chapman EJ; Byron CJ; Lasley-Rasher R; Lipsky C; Stevens JR; Peters R Mar Environ Res; 2020 Dec; 162():105103. PubMed ID: 33059212 [TBL] [Abstract][Full Text] [Related]
2. Bivalve aquaculture-environment interactions in the context of climate change. Filgueira R; Guyondet T; Comeau LA; Tremblay R Glob Chang Biol; 2016 Dec; 22(12):3901-3913. PubMed ID: 27324415 [TBL] [Abstract][Full Text] [Related]
3. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem. Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047 [TBL] [Abstract][Full Text] [Related]
4. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. du Pontavice H; Gascuel D; Reygondeau G; Stock C; Cheung WWL Glob Chang Biol; 2021 Jun; 27(11):2608-2622. PubMed ID: 33660891 [TBL] [Abstract][Full Text] [Related]
5. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309 [TBL] [Abstract][Full Text] [Related]
6. Food-web interactions in a coastal ecosystem influenced by upwelling and terrestrial runoff off North-West Spain. Giralt Paradell O; Díaz López B; Methion S; Rogan E Mar Environ Res; 2020 May; 157():104933. PubMed ID: 32275515 [TBL] [Abstract][Full Text] [Related]
7. Climate change undermines the global functioning of marine food webs. du Pontavice H; Gascuel D; Reygondeau G; Maureaud A; Cheung WWL Glob Chang Biol; 2020 Mar; 26(3):1306-1318. PubMed ID: 31802576 [TBL] [Abstract][Full Text] [Related]
8. Ecosystem dynamics and hypoxia control in the East China Sea: A bottom-up and top-down perspective. Xu Z; Sun Q; Miao Y; Li H; Wang B; Jin H; Zhu Z; Chen J Sci Total Environ; 2024 Mar; 918():170729. PubMed ID: 38325445 [TBL] [Abstract][Full Text] [Related]
9. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Alava JJ; Cheung WWL; Ross PS; Sumaila UR Glob Chang Biol; 2017 Oct; 23(10):3984-4001. PubMed ID: 28212462 [TBL] [Abstract][Full Text] [Related]
10. Food web interactions in a human dominated Mediterranean coastal ecosystem. Papantoniou G; Giannoulaki M; Stoumboudi MT; Lefkaditou E; Tsagarakis K Mar Environ Res; 2021 Dec; 172():105507. PubMed ID: 34742025 [TBL] [Abstract][Full Text] [Related]
11. Ocean acidification and adaptive bivalve farming. Tan K; Zheng H Sci Total Environ; 2020 Jan; 701():134794. PubMed ID: 31715479 [TBL] [Abstract][Full Text] [Related]
12. Climate change negates positive CO Ullah H; Fordham DA; Nagelkerken I Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906 [TBL] [Abstract][Full Text] [Related]
13. Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model. Audzijonyte A; Delius GW; Stuart-Smith RD; Novaglio C; Edgar GJ; Barrett NS; Blanchard JL PLoS Biol; 2023 Dec; 21(12):e3002392. PubMed ID: 38079442 [TBL] [Abstract][Full Text] [Related]
14. Importance of fisheries for food security across three climate change vulnerable deltas. Lauria V; Das I; Hazra S; Cazcarro I; Arto I; Kay S; Ofori-Danson P; Ahmed M; Hossain MAR; Barange M; Fernandes JA Sci Total Environ; 2018 Nov; 640-641():1566-1577. PubMed ID: 30021321 [TBL] [Abstract][Full Text] [Related]
15. Warming and hypoxia threaten a valuable scallop fishery: A warning for commercial bivalve ventures in climate change hotspots. Scanes E; Byrne M Glob Chang Biol; 2023 Apr; 29(8):2043-2045. PubMed ID: 36655296 [TBL] [Abstract][Full Text] [Related]
16. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem. Cornwall CE; Eddy TD Conserv Biol; 2015 Feb; 29(1):207-15. PubMed ID: 25354555 [TBL] [Abstract][Full Text] [Related]
17. Quantifying co-extinctions and ecosystem service vulnerability in coastal ecosystems experiencing climate warming. Wilkes LN; Barner AK; Keyes AA; Morton D; Byrnes JEK; Dee LE Glob Chang Biol; 2024 Jul; 30(7):e17422. PubMed ID: 39034898 [TBL] [Abstract][Full Text] [Related]
18. A food-web model as a tool for the ecosystem-level management of bivalves in an Atlantic coastal lagoon. Jiang W; Coppola F; Jiang Z; Freitas R; Mao Y; Tan Z; Fang J; Fang J; Zhang Y Mar Environ Res; 2023 Sep; 190():106117. PubMed ID: 37540962 [TBL] [Abstract][Full Text] [Related]
19. Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces. Durante L; Wing S; Ingram T; Sabadel A; Shima J Sci Rep; 2022 Mar; 12(1):4309. PubMed ID: 35279693 [TBL] [Abstract][Full Text] [Related]
20. Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Eddy TD; Bernhardt JR; Blanchard JL; Cheung WWL; Colléter M; du Pontavice H; Fulton EA; Gascuel D; Kearney KA; Petrik CM; Roy T; Rykaczewski RR; Selden R; Stock CA; Wabnitz CCC; Watson RA Trends Ecol Evol; 2021 Jan; 36(1):76-86. PubMed ID: 33097289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]