BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33059230)

  • 1. In-situ probing of electrochemical dissolution and surface properties of chalcopyrite with implications for the dissolution kinetics and passivation mechanism.
    Wang J; Xie L; Han L; Wang X; Wang J; Zeng H
    J Colloid Interface Sci; 2021 Feb; 584():103-113. PubMed ID: 33059230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential surface modification mechanism of chalcopyrite and pyrite by Thiobacillus ferrooxidans and its response to bioflotation.
    Su C; Cai J; Zheng Q; Peng R; Yu X; Shen P; Liu D
    Bioresour Technol; 2024 May; 399():130619. PubMed ID: 38552857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy.
    Bevilaqua D; Diéz-Perez I; Fugivara CS; Sanz F; Benedetti AV; Garcia O
    Bioelectrochemistry; 2004 Aug; 64(1):79-84. PubMed ID: 15219250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of N-isopropoxypropyl-N'-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS.
    Liu G; Qiu Z; Wang J; Liu Q; Xiao J; Zeng H; Zhong H; Xu Z
    J Colloid Interface Sci; 2015 Jan; 437():42-49. PubMed ID: 25310581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans.
    Yang B; Lin M; Fang J; Zhang R; Luo W; Wang X; Liao R; Wu B; Wang J; Gan M; Liu B; Zhang Y; Liu X; Qin W; Qiu G
    Sci Total Environ; 2020 Jan; 698():134175. PubMed ID: 31518786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental studies of electrochemically controlled surface oxidation and hydrophobicity of natural enargite.
    Plackowski C; Hampton MA; Nguyen AV; Bruckard WJ
    Langmuir; 2013 Feb; 29(7):2371-86. PubMed ID: 23331095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; González I; Cruz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions.
    Velásquez P; Leinen D; Pascual J; Ramos-Barrado JR; Grez P; Gómez H; Schrebler R; Del Río R; Córdova R
    J Phys Chem B; 2005 Mar; 109(11):4977-88. PubMed ID: 16863157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans.
    Yang B; Zhao C; Luo W; Liao R; Gan M; Wang J; Liu X; Qiu G
    J Hazard Mater; 2020 Jun; 392():122290. PubMed ID: 32092647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered structure of the near-surface region of oxidized chalcopyrite (CuFeS
    Mikhlin Y; Nasluzov V; Romanchenko A; Tomashevich Y; Shor A; Félix R
    Phys Chem Chem Phys; 2017 Jan; 19(4):2749-2759. PubMed ID: 28067400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Surface Electrochemical Activity of Nanomaterials using a Hybrid Atomic Force Microscope-Scanning Electrochemical Microscope (AFM-SECM).
    Shi X; Ma Q; Marhaba T; Zhang W
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Applications in Metal Bioleaching.
    Tanne CK; Schippers A
    Adv Biochem Eng Biotechnol; 2019; 167():327-359. PubMed ID: 29224081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM.
    Mahankali K; Thangavel NK; Reddy Arava LM
    Nano Lett; 2019 Aug; 19(8):5229-5236. PubMed ID: 31322899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetric and drift spectroscopy investigation in dithiophosphinate-chalcopyrite system.
    Güler T; Hiçyilmaz C; Gökağaç G; Ekmekçi Z
    J Colloid Interface Sci; 2004 Nov; 279(1):46-54. PubMed ID: 15380410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis.
    Chang-Li L; Jin-Lan X; Zhen-Yuan N; Yi Y; Chen-Yan M
    Bioresour Technol; 2012 Apr; 110():462-7. PubMed ID: 22336739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchrotron scanning photoemission microscopy of homogeneous and heterogeneous metal sulfide minerals.
    Acres RG; Harmer SL; Shui HW; Chen CH; Beattie DA
    J Synchrotron Radiat; 2011 Jul; 18(Pt 4):649-57. PubMed ID: 21685683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.