These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33059264)

  • 21. A Three-Dimensional Arrayed Microfluidic Blood-Brain Barrier Model With Integrated Electrical Sensor Array.
    Jeong S; Kim S; Buonocore J; Park J; Welsh CJ; Li J; Han A
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):431-439. PubMed ID: 29346110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip.
    Campisi M; Lim SH; Chiono V; Kamm RD
    Methods Mol Biol; 2021; 2258():205-219. PubMed ID: 33340363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier.
    Tian X; Brookes O; Battaglia G
    Sci Rep; 2017 Jan; 7():39676. PubMed ID: 28098158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions.
    Holloway PM
    Methods Mol Biol; 2022; 2492():193-224. PubMed ID: 35733046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.
    Campisi M; Shin Y; Osaki T; Hajal C; Chiono V; Kamm RD
    Biomaterials; 2018 Oct; 180():117-129. PubMed ID: 30032046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blood brain barrier: A tissue engineered microfluidic chip.
    Musafargani S; Mishra S; Gulyás M; Mahalakshmi P; Archunan G; Padmanabhan P; Gulyás B
    J Neurosci Methods; 2020 Feb; 331():108525. PubMed ID: 31756396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling.
    Yamamizu K; Iwasaki M; Takakubo H; Sakamoto T; Ikuno T; Miyoshi M; Kondo T; Nakao Y; Nakagawa M; Inoue H; Yamashita JK
    Stem Cell Reports; 2017 Mar; 8(3):634-647. PubMed ID: 28238797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro models of the blood-brain barrier.
    Czupalla CJ; Liebner S; Devraj K
    Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of a Human iPSC-Based Blood-Brain Barrier Chip.
    Jagadeesan S; Workman MJ; Herland A; Svendsen CN; Vatine GD
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D In Vitro Blood-Brain-Barrier Model for Investigating Barrier Insults.
    Wei W; Cardes F; Hierlemann A; Modena MM
    Adv Sci (Weinh); 2023 Apr; 10(11):e2205752. PubMed ID: 36782313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB).
    Booth R; Kim H
    Lab Chip; 2012 Apr; 12(10):1784-92. PubMed ID: 22422217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Microfluidic Blood-Brain Barrier (BBB) Models.
    Oddo A; Peng B; Tong Z; Wei Y; Tong WY; Thissen H; Voelcker NH
    Trends Biotechnol; 2019 Dec; 37(12):1295-1314. PubMed ID: 31130308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human bone marrow-derived mesenchymal stem cells play a role as a vascular pericyte in the reconstruction of human BBB on the angiogenesis microfluidic chip.
    Kim S; Lee S; Lim J; Choi H; Kang H; Jeon NL; Son Y
    Biomaterials; 2021 Dec; 279():121210. PubMed ID: 34710793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.
    Canfield SG; Stebbins MJ; Morales BS; Asai SW; Vatine GD; Svendsen CN; Palecek SP; Shusta EV
    J Neurochem; 2017 Mar; 140(6):874-888. PubMed ID: 27935037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascularized neural constructs for ex-vivo reconstitution of blood-brain barrier function.
    Yue H; Xie K; Ji X; Xu B; Wang C; Shi P
    Biomaterials; 2020 Jul; 245():119980. PubMed ID: 32229330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Human Immortalized Cell-Based Blood-Brain Barrier Triculture Model: Development and Characterization as a Promising Tool for Drug-Brain Permeability Studies.
    Ito R; Umehara K; Suzuki S; Kitamura K; Nunoya KI; Yamaura Y; Imawaka H; Izumi S; Wakayama N; Komori T; Anzai N; Akita H; Furihata T
    Mol Pharm; 2019 Nov; 16(11):4461-4471. PubMed ID: 31573814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro.
    Lee S; Chung M; Lee SR; Jeon NL
    Biotechnol Bioeng; 2020 Mar; 117(3):748-762. PubMed ID: 31709508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models.
    Hatherell K; Couraud PO; Romero IA; Weksler B; Pilkington GJ
    J Neurosci Methods; 2011 Aug; 199(2):223-9. PubMed ID: 21609734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.