These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33059281)

  • 1. Efficient Cu removal from CuEDTA complex-containing wastewater using electrochemically controlled sacrificial iron anode.
    Ya V; Martin N; Chou YH; Chen SS; Choo KH; Naddeo V; Le NC; Li CW
    Chemosphere; 2021 Feb; 264(Pt 2):128573. PubMed ID: 33059281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.
    Ye X; Zhang J; Zhang Y; Lv Y; Dou R; Wen S; Li L; Chen Y; Hu Y
    Chemosphere; 2016 Dec; 164():304-313. PubMed ID: 27592320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes.
    Maldonado-Reyes A; Montero-Ocampo C; Solorza-Feria O
    J Environ Monit; 2007 Nov; 9(11):1241-7. PubMed ID: 17968451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study.
    Song P; Sun C; Wang J; Ai S; Dong S; Sun J; Sun S
    Chemosphere; 2022 Jan; 287(Pt 1):131971. PubMed ID: 34438208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation.
    Xu Z; Gao G; Pan B; Zhang W; Lv L
    Water Res; 2015 Dec; 87():378-84. PubMed ID: 26454633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep purification of copper from Cu(II)-EDTA acidic wastewater by Fe(III) replacement/diethyldithiocarbamate precipitation.
    Han M; He J; Wei X; Li S; Zhang C; Zhang H; Sun W; Yue T
    Chemosphere; 2022 Aug; 300():134546. PubMed ID: 35405198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.
    Sun JM; Zhu WT; Huang JC
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.
    Zolfaghari M; Drogui P; Blais JF
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7748-7757. PubMed ID: 29290057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anoxic iron electrocoagulation automatically modulates dissolved oxygen and pH for fast reductive decomplexation and precipitation of Cu(II)-EDTA: The critical role of dissolved Fe(II).
    Xie S; Li C; Zhan H; Shao W; Zhao Y; Liu P; Liao P
    J Hazard Mater; 2023 Jan; 442():130069. PubMed ID: 36182887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater.
    Bani-Melhem K; Al-Kilani MR; Tawalbeh M
    Chemosphere; 2023 Jan; 310():136668. PubMed ID: 36209869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced characteristics and mechanism of Cu(II) removal from aqueous solutions in electrocatalytic internal micro-electrolysis fluidized-bed.
    Li T; Duan Z; Qin R; Xu X; Li B; Liu Y; Jiang M; Zhan F; He Y
    Chemosphere; 2020 Jul; 250():126225. PubMed ID: 32114338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti
    Zhi D; Zhang J; Wang J; Luo L; Zhou Y; Zhou Y
    J Environ Manage; 2020 Jul; 265():110571. PubMed ID: 32421562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical process employing scrap metal waste as electrodes for dye removal.
    Nippatla N; Philip L
    J Environ Manage; 2020 Nov; 273():111039. PubMed ID: 32741763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically attracted iron scrap anode based electrocoagulation for phosphate removal.
    Zhu D; Hong X; Hui KS
    Water Sci Technol; 2021 Jul; 84(1):216-224. PubMed ID: 34280165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the adverse impacts of electrochemically produced ClO
    Yan W; Chen J; Wu J; Li Y; Liu Y; Yang Q; Tang Y; Jiang B
    Chemosphere; 2023 Jan; 310():136848. PubMed ID: 36243090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation.
    Tian Y; He W; Liang D; Yang W; Logan BE; Ren N
    Water Res; 2018 Jul; 138():129-136. PubMed ID: 29574200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode.
    Kumar A; Omar RA; Verma N
    Chemosphere; 2020 Jun; 248():126030. PubMed ID: 32032876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation.
    Lin Q; Pan H; Yao K; Pan Y; Long W
    Water Sci Technol; 2015; 72(7):1184-90. PubMed ID: 26398034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between sinusoidal AC coagulation and conventional DC coagulation in removing Cu
    Xu T; Zhou Y; Hu B; Lei X; Yu G
    Ecotoxicol Environ Saf; 2020 Jul; 197():110629. PubMed ID: 32325329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.