These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33059281)

  • 21. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant.
    Fu F; Zeng H; Cai Q; Qiu R; Yu J; Xiong Y
    Chemosphere; 2007 Nov; 69(11):1783-9. PubMed ID: 17624403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient and energy-conserved flocculation of copper in wastewater by pulse-alternating current.
    Xu T; Lei X; Sun B; Yu G; Zeng Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20577-20586. PubMed ID: 28710738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate.
    Qu G; Chu R; Wang H; Wang T; Zhang Z; Qiang H; Liang D; Hu S
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40826-40836. PubMed ID: 32677009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration.
    Li S; Wang W; Yan W; Zhang WX
    Environ Sci Process Impacts; 2014 Mar; 16(3):524-33. PubMed ID: 24473735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II).
    Xiao X; Ye M; Yan P; Qiu Y; Sun S; Ren J; Dai Y; Han D
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19696-706. PubMed ID: 27406222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of Cu(II) by chemical reduction using sodium dithionite: effect of pH and ligands.
    Chou YH; Yu JH; Liang YM; Wang PJ; Li CW; Chen SS
    Water Sci Technol; 2015; 72(11):2089-94. PubMed ID: 26606104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: Performance and mechanism.
    Zeng Z; Zheng P; Kang D; Li Y; Li W; Xu D; Chen W; Pan C
    J Hazard Mater; 2021 Jan; 401():123767. PubMed ID: 33113734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment.
    Escobedo E; Cho K; Chang YS
    J Hazard Mater; 2022 Feb; 423(Pt A):127068. PubMed ID: 34523470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous removal of fluoride and nitrate from synthetic aqueous solution and groundwater by the electrochemical process using non-coated and coated anode electrodes: A human health risk study.
    Ashoori R; Samaei MR; Yousefinejad S; Azhdarpoor A; Emadi Z; Mohammadpour A; Lari AR; Mousavi Khaneghah A
    Environ Res; 2022 Nov; 214(Pt 3):113938. PubMed ID: 35977584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel arrangement for an electro-Fenton reactor that does not require addition of iron, acid and a final neutralization stage. Towards the development of a cost-effective technology for the treatment of wastewater.
    Fernández D; Robles I; Rodríguez-Valadez FJ; Godínez LA
    Chemosphere; 2018 May; 199():251-255. PubMed ID: 29448191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti
    Zhang F; Wang W; Xu L; Zhou C; Sun Y; Niu J
    Chemosphere; 2021 Sep; 278():130465. PubMed ID: 34126689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes.
    Borbón B; Oropeza-Guzman MT; Brillas E; Sirés I
    Environ Sci Pollut Res Int; 2014; 21(14):8573-84. PubMed ID: 24671400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation.
    Wang Q; Yu J; Chen X; Du D; Wu R; Qu G; Guo X; Jia H; Wang T
    J Environ Manage; 2019 Oct; 248():109237. PubMed ID: 31310932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H
    Zhou D; Hu Y; Guo Q; Yuan W; Deng J; Dang Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1015-1025. PubMed ID: 28035604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-peroxone enables efficient Cr removal and recovery from Cr(III) complexes and inhibits intermediate Cr(VI) generation in wastewater: Performance and mechanism.
    Chen C; Liu P; Li Y; Tian H; Zhang Y; Zheng X; Liu R; Zhao M; Huang X
    Water Res; 2022 Jun; 218():118502. PubMed ID: 35490457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.
    Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P
    J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation.
    Sun Z; Xu Z; Zhou Y; Zhang D; Chen W
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26869-26882. PubMed ID: 31302892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water.
    Zhao H; Zhang D; Du P; Li H; Liu C; Li Y; Cao H; Crittenden JC; Huang Q
    J Hazard Mater; 2015 Oct; 297():269-77. PubMed ID: 25978190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous removal of methylene blue and copper(II) ions by photoelectron catalytic oxidation using stannic oxide modified iron(III) oxide composite electrodes.
    Qi J; Li X; Zheng H; Li P; Wang H
    J Hazard Mater; 2015 Aug; 293():105-11. PubMed ID: 25855567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies.
    Lin Z; Yao W; Wang Y; Yu G; Deng S; Huang J; Wang B
    Water Res; 2016 Jan; 88():691-702. PubMed ID: 26580085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.