These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33059363)
1. AI Neuropathologist: an innovative technology enabling a faultless pathological diagnosis? Komori T Neuro Oncol; 2021 Jan; 23(1):1-2. PubMed ID: 33059363 [No Abstract] [Full Text] [Related]
2. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Jin L; Shi F; Chun Q; Chen H; Ma Y; Wu S; Hameed NUF; Mei C; Lu J; Zhang J; Aibaidula A; Shen D; Wu J Neuro Oncol; 2021 Jan; 23(1):44-52. PubMed ID: 32663285 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning and Colon Cancer Interpretation: Rise of the Machine. McHugh K; Pai RK Surg Pathol Clin; 2023 Dec; 16(4):651-658. PubMed ID: 37863557 [TBL] [Abstract][Full Text] [Related]
4. AI-based computational H&E staining in lymphomas. Wake LM; Koka R; Kallen ME J Hematop; 2024 Sep; 17(3):175-177. PubMed ID: 38869814 [No Abstract] [Full Text] [Related]
5. Multi-modality artificial intelligence in digital pathology. Qiao Y; Zhao L; Luo C; Luo Y; Wu Y; Li S; Bu D; Zhao Y Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36124675 [TBL] [Abstract][Full Text] [Related]
6. The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images. Boschman J; Farahani H; Darbandsari A; Ahmadvand P; Van Spankeren A; Farnell D; Levine AB; Naso JR; Churg A; Jones SJ; Yip S; Köbel M; Huntsman DG; Gilks CB; Bashashati A J Pathol; 2022 Jan; 256(1):15-24. PubMed ID: 34543435 [TBL] [Abstract][Full Text] [Related]
7. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Wang W; Zhao Y; Teng L; Yan J; Guo Y; Qiu Y; Ji Y; Yu B; Pei D; Duan W; Wang M; Wang L; Duan J; Sun Q; Wang S; Duan H; Sun C; Guo Y; Luo L; Guo Z; Guan F; Wang Z; Xing A; Liu Z; Zhang H; Cui L; Zhang L; Jiang G; Yan D; Liu X; Zheng H; Liang D; Li W; Li ZC; Zhang Z Nat Commun; 2023 Oct; 14(1):6359. PubMed ID: 37821431 [TBL] [Abstract][Full Text] [Related]
8. A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Li D; Bledsoe JR; Zeng Y; Liu W; Hu Y; Bi K; Liang A; Li S Nat Commun; 2020 Nov; 11(1):6004. PubMed ID: 33244018 [TBL] [Abstract][Full Text] [Related]
9. Comment on "Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology: a systematic review". Rivero Belenchón I; Checcucci E; Gómez Rivas J; Puliatti S; Taratkin M; Kowalewski KF; Rodler S; Veccia A; Medina Lopez RA; Cacciamani G; Minerva Urol Nephrol; 2022 Dec; 74(6):810-812. PubMed ID: 36629813 [No Abstract] [Full Text] [Related]
10. Classification of glomerular pathological findings using deep learning and nephrologist-AI collective intelligence approach. Uchino E; Suzuki K; Sato N; Kojima R; Tamada Y; Hiragi S; Yokoi H; Yugami N; Minamiguchi S; Haga H; Yanagita M; Okuno Y Int J Med Inform; 2020 Sep; 141():104231. PubMed ID: 32682317 [TBL] [Abstract][Full Text] [Related]
11. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related]
12. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology. Zhang J; Song Y; Xia F; Zhu C; Zhang Y; Song W; Xu J; Ma X Med Hypotheses; 2017 Sep; 107():98-99. PubMed ID: 28915974 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence on MRI for molecular subtyping of diffuse gliomas: feature comparison, visualization, and correlation between radiomics and deep learning. Zhou Z Eur Radiol; 2022 Feb; 32(2):745-746. PubMed ID: 34825932 [No Abstract] [Full Text] [Related]
14. On the promise of artificial intelligence for standardizing radiographic response assessment in gliomas. Ellingson BM Neuro Oncol; 2019 Nov; 21(11):1346-1347. PubMed ID: 31504809 [No Abstract] [Full Text] [Related]
15. Applications of Artificial Intelligence in Cardiology. The Future is Already Here. Dorado-Díaz PI; Sampedro-Gómez J; Vicente-Palacios V; Sánchez PL Rev Esp Cardiol (Engl Ed); 2019 Dec; 72(12):1065-1075. PubMed ID: 31611150 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning AI Applications in the Imaging of Glioma. Zlochower A; Chow DS; Chang P; Khatri D; Boockvar JA; Filippi CG Top Magn Reson Imaging; 2020 Apr; 29(2):115-0. PubMed ID: 32271288 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? Bini SA J Arthroplasty; 2018 Aug; 33(8):2358-2361. PubMed ID: 29656964 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Currie G; Hawk KE; Rohren E; Vial A; Klein R J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480 [TBL] [Abstract][Full Text] [Related]
20. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Fujita H Radiol Phys Technol; 2020 Mar; 13(1):6-19. PubMed ID: 31898014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]