These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 33059590)
1. An evaluation of DistillerSR's machine learning-based prioritization tool for title/abstract screening - impact on reviewer-relevant outcomes. Hamel C; Kelly SE; Thavorn K; Rice DB; Wells GA; Hutton B BMC Med Res Methodol; 2020 Oct; 20(1):256. PubMed ID: 33059590 [TBL] [Abstract][Full Text] [Related]
2. Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool. Gates A; Johnson C; Hartling L Syst Rev; 2018 Mar; 7(1):45. PubMed ID: 29530097 [TBL] [Abstract][Full Text] [Related]
3. Performance and usability of machine learning for screening in systematic reviews: a comparative evaluation of three tools. Gates A; Guitard S; Pillay J; Elliott SA; Dyson MP; Newton AS; Hartling L Syst Rev; 2019 Nov; 8(1):278. PubMed ID: 31727150 [TBL] [Abstract][Full Text] [Related]
4. Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews. Gates A; Gates M; DaRosa D; Elliott SA; Pillay J; Rahman S; Vandermeer B; Hartling L Syst Rev; 2020 Nov; 9(1):272. PubMed ID: 33243276 [TBL] [Abstract][Full Text] [Related]
5. The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr's relevance predictions in systematic and rapid reviews. Gates A; Gates M; Sebastianski M; Guitard S; Elliott SA; Hartling L BMC Med Res Methodol; 2020 Jun; 20(1):139. PubMed ID: 32493228 [TBL] [Abstract][Full Text] [Related]
6. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-Reviewer. Tsou AY; Treadwell JR; Erinoff E; Schoelles K Syst Rev; 2020 Apr; 9(1):73. PubMed ID: 32241297 [TBL] [Abstract][Full Text] [Related]
7. Performance of active learning models for screening prioritization in systematic reviews: a simulation study into the Average Time to Discover relevant records. Ferdinands G; Schram R; de Bruin J; Bagheri A; Oberski DL; Tummers L; Teijema JJ; van de Schoot R Syst Rev; 2023 Jun; 12(1):100. PubMed ID: 37340494 [TBL] [Abstract][Full Text] [Related]
8. An Automated Literature Review Tool (LiteRev) for Streamlining and Accelerating Research Using Natural Language Processing and Machine Learning: Descriptive Performance Evaluation Study. Orel E; Ciglenecki I; Thiabaud A; Temerev A; Calmy A; Keiser O; Merzouki A J Med Internet Res; 2023 Sep; 25():e39736. PubMed ID: 37713261 [TBL] [Abstract][Full Text] [Related]
9. Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow. Pham B; Jovanovic J; Bagheri E; Antony J; Ashoor H; Nguyen TT; Rios P; Robson R; Thomas SM; Watt J; Straus SE; Tricco AC Syst Rev; 2021 May; 10(1):156. PubMed ID: 34039433 [TBL] [Abstract][Full Text] [Related]
10. SWIFT-Active Screener: Accelerated document screening through active learning and integrated recall estimation. Howard BE; Phillips J; Tandon A; Maharana A; Elmore R; Mav D; Sedykh A; Thayer K; Merrick BA; Walker V; Rooney A; Shah RR Environ Int; 2020 May; 138():105623. PubMed ID: 32203803 [TBL] [Abstract][Full Text] [Related]
11. Assessing the accuracy of machine-assisted abstract screening with DistillerAI: a user study. Gartlehner G; Wagner G; Lux L; Affengruber L; Dobrescu A; Kaminski-Hartenthaler A; Viswanathan M Syst Rev; 2019 Nov; 8(1):277. PubMed ID: 31727159 [TBL] [Abstract][Full Text] [Related]
12. Can artificial intelligence separate the wheat from the chaff in systematic reviews of health economic articles? Oude Wolcherink MJ; Pouwels XGLV; van Dijk SHB; Doggen CJM; Koffijberg H Expert Rev Pharmacoecon Outcomes Res; 2023; 23(9):1049-1056. PubMed ID: 37573521 [TBL] [Abstract][Full Text] [Related]
14. Measuring the impact of screening automation on meta-analyses of diagnostic test accuracy. Norman CR; Leeflang MMG; Porcher R; Névéol A Syst Rev; 2019 Oct; 8(1):243. PubMed ID: 31661028 [TBL] [Abstract][Full Text] [Related]
15. The efficiency of machine learning-assisted platform for article screening in systematic reviews in orthopaedics. Muthu S Int Orthop; 2023 Feb; 47(2):551-556. PubMed ID: 36562816 [TBL] [Abstract][Full Text] [Related]
16. Creating efficiencies in the extraction of data from randomized trials: a prospective evaluation of a machine learning and text mining tool. Gates A; Gates M; Sim S; Elliott SA; Pillay J; Hartling L BMC Med Res Methodol; 2021 Aug; 21(1):169. PubMed ID: 34399684 [TBL] [Abstract][Full Text] [Related]
17. Deep Neural Network for Reducing the Screening Workload in Systematic Reviews for Clinical Guidelines: Algorithm Validation Study. Yamada T; Yoneoka D; Hiraike Y; Hino K; Toyoshiba H; Shishido A; Noma H; Shojima N; Yamauchi T J Med Internet Res; 2020 Dec; 22(12):e22422. PubMed ID: 33262102 [TBL] [Abstract][Full Text] [Related]
18. Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews. Qin X; Liu J; Wang Y; Liu Y; Deng K; Ma Y; Zou K; Li L; Sun X J Clin Epidemiol; 2021 May; 133():121-129. PubMed ID: 33485929 [TBL] [Abstract][Full Text] [Related]
19. Successful incorporation of single reviewer assessments during systematic review screening: development and validation of sensitivity and work-saved of an algorithm that considers exclusion criteria and count. Nama N; Hennawy M; Barrowman N; O'Hearn K; Sampson M; McNally JD Syst Rev; 2021 Apr; 10(1):98. PubMed ID: 33820560 [TBL] [Abstract][Full Text] [Related]