These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33059906)

  • 1. An active disturbance rejection control for hysteresis compensation based on Neural Networks adaptive control.
    Liu W; Zhao T
    ISA Trans; 2021 Mar; 109():81-88. PubMed ID: 33059906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear control of a class of non-affine variable-speed variable-pitch wind turbines with radial-basis function neural networks.
    Bagheri P; Behjat L; Sun Q
    ISA Trans; 2022 Dec; 131():197-209. PubMed ID: 35715269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive iterative learning control of a class of nonlinear time-delay systems with unknown backlash-like hysteresis input and control direction.
    Wei J; Zhang Y; Sun M; Geng B
    ISA Trans; 2017 Sep; 70():79-92. PubMed ID: 28545663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction Compensation Control of Electromechanical Actuator Based on Neural Network Adaptive Sliding Mode.
    Ruan W; Dong Q; Zhang X; Li Z
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive neural network control of unknown nonlinear affine systems with input deadzone and output constraint.
    He W; Dong Y; Sun C
    ISA Trans; 2015 Sep; 58():96-104. PubMed ID: 26142983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis.
    Wang H; Chen B; Liu K; Liu X; Lin C
    IEEE Trans Neural Netw Learn Syst; 2014 May; 25(5):947-58. PubMed ID: 24808040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Robust Output Feedback Control for a Marine Dynamic Positioning System Based on a High-Gain Observer.
    Du J; Hu X; Liu H; Chen CL
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2775-86. PubMed ID: 25769172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active disturbance rejection control design for high-order integral systems.
    Wu Z; Shi G; Li D; Liu Y; Chen Y
    ISA Trans; 2022 Jun; 125():560-570. PubMed ID: 34246452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel practical control approach for rate independent hysteretic systems.
    Goforth FJ; Zheng Q; Gao Z
    ISA Trans; 2012 May; 51(3):477-84. PubMed ID: 22369878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Neural Tracking Control of Switched Stochastic Pure-Feedback Nonlinear Systems With Unknown Bouc-Wen Hysteresis Input.
    Namadchian Z; Rouhani M
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5859-5869. PubMed ID: 29993670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system.
    Feng H; Song Q; Ma S; Ma W; Yin C; Cao D; Yu H
    ISA Trans; 2022 Oct; 129(Pt A):472-484. PubMed ID: 35067353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.
    Zhen HT; Qi XH; Li J; Tian QM
    ScientificWorldJournal; 2014; 2014():942094. PubMed ID: 25147871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive tracking controller using neural networks for a class of nonlinear systems.
    Zhihong M; Wu HR; Palaniswami M
    IEEE Trans Neural Netw; 1998; 9(5):947-55. PubMed ID: 18255778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and parameter tuning of active disturbance rejection control for uncertain multivariable systems via quantitative feedback theory.
    Cheng Y; Fan Y; Zhang P; Yuan Y; Li J
    ISA Trans; 2023 Oct; 141():288-302. PubMed ID: 37442680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Adaptive Finite-Time Control of Teleoperation System With Time-Varying Delays and Input Saturation.
    Zhang H; Song A; Li H; Shen S
    IEEE Trans Cybern; 2021 Jul; 51(7):3724-3737. PubMed ID: 31329141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks.
    Li Y; Qiang S; Zhuang X; Kaynak O
    IEEE Trans Neural Netw; 2004 May; 15(3):693-701. PubMed ID: 15384556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.
    Min Wang ; Xiaoping Liu ; Peng Shi
    IEEE Trans Syst Man Cybern B Cybern; 2011 Dec; 41(6):1681-92. PubMed ID: 21788196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced disturbance rejection control based test rocket control system design and validation.
    Li T; Esteban AM; Zhang S
    ISA Trans; 2019 Jan; 84():31-42. PubMed ID: 30316570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.
    Wen Y; Ren X
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1599-612. PubMed ID: 21880569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of unstable processes with time delays via ADRC.
    Fu C; Tan W
    ISA Trans; 2017 Nov; 71(Pt 2):530-541. PubMed ID: 28919288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.